Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Some fixed point theorems for *s*-convex subsets in *p*-normed spaces

Jian-Zhong Xiao*, Xing-Hua Zhu

College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, PR China

ARTICLE INFO

Article history: Received 14 June 2010 Accepted 21 October 2010

MSC: 47H10 46A16

Keywords: p-normed space s-convex set Fixed point theorem Homeomorphism Minkowski s-functional

ABSTRACT

The existence of fixed points of operators on *s*-convex sets in *p*-normed spaces is studied, where 0 . By means of homeomorphisms the fixed point theorems of the types of Brouwer, Schauder, Kakutani, Rothe, Petryshyn, Altman, and Krasnosel'skii are proved for*s*-convex sets. As an application, the existence result of solutions for the game concerning*s*-convex–concave operators is given in product*p*-normed spaces.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let *X* be a linear space over *K* with the origin θ , where *K* is the field of real numbers or complex numbers. A *p*-norm on *X* is a nonnegative real-valued functional $\|\cdot\|_p$ on *X* with 0 , satisfying the following conditions:

(a) $||x||_p = 0$ if and only if $x = \theta$;

- (b) $\|\lambda x\|_p = |\lambda|^p \|x\|_p$, for all $x \in X$, $\lambda \in K$;
- (c) $||x + y||_p \le ||x||_p + ||y||_p$, for all $x, y \in X$.

A linear space X on which there is a *p*-norm is called a *p*-normed space and is denoted by $(X, \|\cdot\|_p)$. If p = 1, then it is a usual normed space. A *p*-normed space is also a metric linear space with a translation invariant metric $d_p(x, y) = \|x - y\|_p$ for $x, y \in X$. It is a basic fact that the topology of every Hausdorff locally bounded topological linear space is given by some *p*-norm. The space $L^p(\mu)$ is a *p*-normed space based on the complete measure space (Ω, M, μ) with the *p*-norm given by

$$||f(t)||_p = \int_{\Omega} |f(t)|^p \mathrm{d}\mu, \quad \text{for } f \in L^p(\mu),$$

where Ω is a nonempty set, \mathcal{M} is a σ -algebra in Ω , $\mu : \mathcal{M} \to [0, +\infty)$ is a positive measure, and

$$L^{p}(\mu) = \left\{ f \mid f : \Omega \to K \text{ is measurable, and } \int_{\Omega} |f(t)|^{p} d\mu < +\infty \right\}.$$

If μ is the Lebesgue measure on [0, 1], then it is customary to write $L^p[0, 1]$ instead of $L^p(\mu)$. If μ is the counting measure on $\Omega = \{1, \ldots, n\}$ or $\Omega = \{1, 2, \ldots\}$, then the corresponding spaces are denoted by $l^p(n)$ and l^p , respectively. $l^p(n)$ is

* Corresponding author. Fax: +86 02558731073.

E-mail address: xiaojz@nuist.edu.cn (J.-Z. Xiao).

 $^{0362\}text{-}546X/\$$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.046