Contents lists available at ScienceDirect

Nonlinear Analysis

Fractional Navier–Stokes equations and a Hölder-type inequality in a sum of singular spaces

Lucas C.F. Ferreira^{a,*}, Elder J. Villamizar-Roa^b

^a Universidade Estadual de Campinas, Departamento de Matemática, CEP 13083-859, Campinas-SP, Brazil ^b Escuela de Matemáticas, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia

ARTICLE INFO

Article history: Received 20 November 2010 Accepted 17 May 2011 Communicated by Enzo Mitidieri

MSC: 35Q30 26A33 76D03

Keywords: Navier–Stokes equations Singular data Fractional dissipation

ABSTRACT

In this paper we study the local well-posedness of the fractional Navier–Stokes system with initial data belonging to a sum of two pseudomeasure-type spaces denoted by $PM^{a,b} := PM^a + PM^b$. The proof requires showing a Hölder-type inequality in $PM^{a,b}$, as well as establishing estimates of the semigroup generated by the fractional power of Laplacian $(-\Delta)^{\gamma}$ on these spaces.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and the statement of results

We study the Cauchy problem for the fractional Navier–Stokes equations in the whole space \mathbb{R}^n :

$$\begin{cases} u_t + (-\Delta)^{\gamma} u + (u \cdot \nabla) u + \nabla p = f, & x \in \mathbb{R}^n, \ t > 0, \\ \operatorname{div} u = 0, & x \in \mathbb{R}^n, \ t > 0, \\ u(x, t) \to 0 & \operatorname{as} |x| \to \infty, \ t > 0, \\ u(x, 0) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$
(1.1)

where $n \ge 2$, $\gamma \in (\frac{1}{2}, \frac{n+2}{4})$ and $(-\Delta)^{\gamma}$ is a fractional power of the Laplacian, which is defined through the Fourier transform as $((-\Delta)^{\gamma}\psi)(\xi) = |\xi|^{2\gamma}\psi(\xi)$.

Fluid mechanics models with fractional dissipation have been addressed in several recent works; see e.g. [1–5] and references therein. For $\gamma \geq \frac{n+2}{4}$, it is known that for each smooth initial value, system (1.1) possesses a global classical solution (see e.g. [4]). In the case $\gamma = 1$, (1.1) reduces to the well-known Navier–Stokes equations. In Clay Institute's list of prize problems, there is a famous open problem concerning whether smooth solutions for 3D Navier–Stokes equations blow up (or not) at a finite time *T*. In connection with this problem, a motivation arises for studying (in the range $\gamma < \frac{n+2}{4}$) system (1.1) in spaces that contain singular functions. In this direction, we are interested in the space $PM^{a,b} := PM^a + PM^b$,

^{*} Corresponding author. Tel.: +55 19 3521 6032; fax: +55 19 3289 5766. E-mail addresses: lcff@ime.unicamp.br (L.C.F. Ferreira), jvillami@uis.edu.co (E.J. Villamizar-Roa).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.047