Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On scalar and vector ℓ -stable functions

Ivan Ginchev

University of Insubria, Faculty of Economics, Via Monte Generoso 71, 21100 Varese, Italy

ARTICLE INFO

Article history: Received 24 November 2009 Accepted 19 August 2010

MSC: 26A16 90C29 90C46 49I52

Keywords: ℓ -stable functions Lipschitz functions $C^{1,1}$ functions Vector optimization Optimality conditions

1. Introduction

The notion of a scalar function that is ℓ -stable at a point is introduced by Bednařík and Pastor [1]. The motivation for this can be summarized as follows. Starting with the paper of Hiriart-Urruty et al. [2], second-order conditions for a point x^0 to be a solution for scalar or vector optimization problems with $C^{1,1}$ data near the reference point x^0 have been investigated. For scalar problems, results of this type can be seen in [3–6], and for vector problems, in [7–11]. Recall that a function f is called $C^{1,1}$ near x^0 if there is a neighborhood U of x^0 where f is Fréchet differentiable with a Lipschitz derivative. Observing that the aforementioned optimality conditions depend on properties only at the point x^0 , one may think that the hypothesis of being $C^{1,1}$ near x^0 could be weakened in an appropriate way, such that these conditions remain true for problems with data satisfying the weakened hypothesis. The ℓ -stable function seems to be the appropriate relaxation. In [1] Bednařík and Pastor relax, for unconstrained scalar problems, the optimality condition presented in Ginchev et al. [12] from the functions being $C^{1,1}$ to them being ℓ -stable. The result obtained generalizes also those of Ben-Tal and Zowe [13], Cominetti and Correa [14] and Bednařík and Pastor [15]. Further, one reads in [1]: "Since $C^{1,1}$ functions appear in e.g. the augmented Lagrange method, the penalty function method and the proximal point method, and since the property to be $C^{1,1}$ function near some point requires stronger assumptions than the property to be ℓ -stable function at considered point, it seems to be useful to study the class of ℓ -stable functions". The eventual importance of the functions that are ℓ -stable at a point justifies their further study undertaken by Bednařík and Pastor in [16–18].

In the present paper we obtain an alternative characterization of a function that is ℓ -stable at a point and on this basis show the equivalence of the ℓ -stable and u-stable functions (the latter are defined as the ℓ -stable functions on replacing the lower derivative with the upper one). Further, we introduce the notion of an ℓ -stable vector function, develop the aforementioned characterization to vector functions, and prove optimality conditions for constrained vector optimization problems

ABSTRACT

The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the notion of an ℓ -stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with ℓ -stable data are established.

© 2010 Elsevier Ltd. All rights reserved.

E-mail address: vechnig@yahoo.com.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.08.032