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a b s t r a c t

Let l2(Z) be the Hilbert space of square summable double sequences of complex numbers
with standard basis {en : n ∈ Z}, and let us consider a boundedmatrix A on l2(Z) satisfying
the following system of equations

1. ⟨Ae2j, e2i⟩ = pij + a⟨Aej, ei⟩;
2. ⟨Ae2j, e2i−1⟩ = qij + b⟨Aej, ei⟩;
3. ⟨Ae2j−1, e2i⟩ = vij + c⟨Aej, ei⟩;
4. ⟨Ae2j−1, e2i−1⟩ = wij + d⟨Aej, ei⟩

for all i, j, where P = (pij), Q = (qij), V = (vij), W = (wij) are bounded matrices on l2(Z)
and a, b, c, d ∈ C.

It is clear that the solutions of the above system of equations introduces a new class of
infinite matrices whose entries are related ‘‘dyadically’’. In this paper, we will show that
while the task of constructing these matrices explicitly using purely algebraic methods
may appear to be very complicated and tedious, if not impossible, it can be carried out
alternatively in a systematical and relatively simple way by applying the theory of Hardy
classes of operators through a certain action on B(H) (space of bounded operators on H)
induced by a shift.

© 2010 Elsevier Ltd. All rights reserved.

1. Motivations

Let l2(Z) be the Hilbert space of square summable double sequences of complex numbers with standard basis E = {en :

n ∈ Z}. Also, let P = (pij),Q = (qij), V = (vij),W = (wij) be bounded matrices on l2(Z) and a, b, c, d ∈ C. The purpose of
this article is to study bounded solutions of the following system of equations

⟨Ae2j, e2i⟩ = pij + a⟨Aej, ei⟩
⟨Ae2j, e2i−1⟩ = qij + b⟨Aej, ei⟩
⟨Ae2j−1, e2i⟩ = vij + c⟨Aej, ei⟩
⟨Ae2j−1, e2i−1⟩ = wij + d⟨Aej, ei⟩

(⋆)

for all i, j (where ⟨·, ·⟩ is the inner product). It is clear that if A is a solution of (⋆), then A can be determined by the entries
{a00, a01, a10, a11} (see Fig. 1).
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