

Contents lists available at ScienceDirect

Nonlinear Analysis

On the Fučik spectrum for the *p*-Laplacian with Robin boundary condition

Dumitru Motreanu^a, Patrick Winkert^{b,*}

ARTICLE INFO

Article history: Received 6 December 2010 Accepted 12 April 2011 Communicated by S. Carl

MSC: 35J92 35J20 47J10

Keywords: p-Laplacian Robin boundary conditions Fučik spectrum

ABSTRACT

The aim of this paper is to study the Fučik spectrum of the *p*-Laplacian with Robin boundary condition given by

$$-\Delta_p u = a(u^+)^{p-1} - b(u^-)^{p-1} \quad \text{in } \Omega,$$
$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = -\beta |u|^{p-2} u \quad \text{on } \partial \Omega,$$

where $\beta \geq 0$. If $\beta = 0$, it reduces to the Fučik spectrum of the negative Neumann p-Laplacian. The existence of a first nontrivial curve \mathcal{C} of this spectrum is shown and we prove some properties of this curve, e.g., \mathcal{C} is Lipschitz continuous, decreasing and has a certain asymptotic behavior. A variational characterization of the second eigenvalue λ_2 of the Robin eigenvalue problem involving the p-Laplacian is also obtained.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Fučik spectrum of the negative p-Laplacian with a Robin boundary condition is defined as the set $\widehat{\Sigma}_p$ of $(a,b) \in \mathbb{R}^2$ such that

$$-\Delta_{p}u = a(u^{+})^{p-1} - b(u^{-})^{p-1} \quad \text{in } \Omega,$$

$$|\nabla u|^{p-2} \frac{\partial u}{\partial v} = -\beta |u|^{p-2} u \quad \text{on } \partial\Omega,$$
(1.1)

has a nontrivial solution. Here the domain $\Omega \subset \mathbb{R}^N$ is supposed to be bounded with a smooth boundary $\partial \Omega$. The notation $-\Delta_p u$ stands for the negative p-Laplacian of u, i.e., $-\Delta_p u = -\text{div}(|\nabla u|^{p-2}\nabla u)$, with $1 , while <math>\frac{\partial u}{\partial v}$ denotes the outer normal derivative of u and β is a parameter belonging to $[0, +\infty)$. We also denote $u^\pm = \max\{\pm u, 0\}$. For $\beta = 0, (1.1)$ becomes the Fučik spectrum of the negative Neumann p-Laplacian. Let us recall that $u \in W^{1,p}(\Omega)$ is a (weak) solution of (1.1) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx + \beta \int_{\partial \Omega} |u|^{p-2} uv d\sigma = \int_{\Omega} (a(u^+)^{p-1} - b(u^-)^{p-1}) v dx, \quad \forall v \in W^{1,p}(\Omega).$$

$$\tag{1.2}$$

If $a = b = \lambda$, problem (1.1) reduces to

$$-\Delta_{p}u = \lambda |u|^{p-2}u \quad \text{in } \Omega,$$

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = -\beta |u|^{p-2}u \quad \text{on } \partial\Omega,$$
(1.3)

E-mail addresses: motreanu@univ-perp.fr (D. Motreanu), winkert@math.tu-berlin.de, patrick@winkert.de, patrick@math.winkert.de (P. Winkert).

^a Département de Mathématiques, Université de Perpignan, Avenue Paul Alduy 52, 66860 Perpignan Cedex, France

^b Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

^{*} Corresponding author.