# Positive solutions to a semilinear elliptic equation with a Sobolev-Hardy term 

Ali Al-aati *, Chunhua Wang, Jing Zhao<br>School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China

## ARTICLE INFO

## Article history:

Received 14 February 2011
Accepted 28 April 2011
Communicated by Enzo Mitidieri

## Keywords:

Global compactness
Hardy-Sobolev inequality
Positive solutions
Mountain-pass Lemma

## A B S T R A C T

In this paper, we study the existence of positive solutions to the following semilinear elliptic equation with a Sobolev-Hardy term

$$
\begin{cases}-\Delta u-\lambda u=\frac{u^{2^{\sharp}-1}}{|y|} & x \in \Omega,  \tag{0.1}\\ u>0, & x \in \Omega, \\ u \in H_{0}^{1}(\Omega), & \end{cases}
$$

where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^{N}(N \geq 3)$, $x=(y, z) \in \Omega \subset$ $\mathbb{R}^{k} \times \mathbb{R}^{N-k}=\mathbb{R}^{N}, 2 \leq k<N, 2^{\sharp}:=\frac{2(N-1)}{N-2}$ is the corresponding critical exponent and $0<\lambda<\lambda_{1}$ where $\lambda_{1}$ is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$. When $N \geq 4$, we prove that problem (0.1) has at least one positive solution by using the mountain-pass lemma and a global compactness result. The case $N=3$ is quite different and we deal with this case by using the method in Jannelli (1999) [20] to prove the existence result. Moreover, we obtain the nonexistence result of ( 0.1 ) in a star shaped domain. Our main results extend a recent result of Castorina et al. (2009) [10] where $\lambda=0$ and $\Omega=\mathbb{R}^{N}$.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

## 1. Introduction

Let $\Omega$ be a smooth bounded domain of $\mathbb{R}^{N}=\mathbb{R}^{k} \times \mathbb{R}^{N-k}$, with $2 \leq k<N, N \geq 3$. Suppose for some $\left(0, z_{0}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$ such that $\left(0, z_{0}\right) \in \Omega$. Without loss of generality we suppose $0 \in \Omega$. Denote a point $x \in \mathbb{R}^{N}$ by $x=(y, z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$.

In this paper, we consider the following semilinear elliptic equation with the Sobolev-Hardy term

$$
\begin{cases}-\Delta u-\lambda u=\frac{u^{2^{\sharp}-1}}{|y|} & x \in \Omega,  \tag{1.1}\\ u>0, & x \in \Omega, \\ u \in H_{0}^{1}(\Omega), & \end{cases}
$$

where $2^{\sharp}:=\frac{2(N-1)}{N-2}$ is the corresponding critical exponent, $0<\lambda<\lambda_{1}, \lambda_{1}$ is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$. This problem is the Euler-Lagrange equation of the Hardy-Sobolev-Maz'ya inequality

$$
\begin{equation*}
C\left(\int_{\Omega} \frac{|u|^{2^{\sharp}}}{|y|} \mathrm{d} y \mathrm{~d} z\right)^{\frac{2}{2^{\sharp}}} \leq \int_{\Omega}\left[|\nabla u|^{2}-\lambda u^{2}\right] \mathrm{d} y \mathrm{~d} z, \quad \forall u \in C_{0}^{\infty}(\Omega) \tag{1.2}
\end{equation*}
$$

[^0]
[^0]:    * Corresponding author. Tel.: +86 2767863871.

    E-mail address: alati2005@yahoo.com (A. Al-aati).

