Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Positive solutions to a semilinear elliptic equation with a Sobolev–Hardy term

Ali Al-aati*, Chunhua Wang, Jing Zhao

School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China

ARTICLE INFO

Article history: Received 14 February 2011 Accepted 28 April 2011 Communicated by Enzo Mitidieri

Keywords: Global compactness Hardy–Sobolev inequality Positive solutions Mountain-pass Lemma

ABSTRACT

In this paper, we study the existence of positive solutions to the following semilinear elliptic equation with a Sobolev–Hardy term

$$\begin{cases} -\Delta u - \lambda u = \frac{u^{2^{\beta}-1}}{|y|} & x \in \Omega, \\ u > 0, & x \in \Omega, \\ u \in H_0^1(\Omega), \end{cases}$$
(0.1)

where Ω is a bounded domain with smooth boundary in $\mathbb{R}^{N}(N \geq 3)$, $x = (y, z) \in \Omega \subset \mathbb{R}^{k} \times \mathbb{R}^{N-k} = \mathbb{R}^{N}$, $2 \leq k < N$, $2^{\sharp} := \frac{2(N-1)}{N-2}$ is the corresponding critical exponent and $0 < \lambda < \lambda_{1}$ where λ_{1} is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$. When $N \geq 4$, we prove that problem (0.1) has at least one positive solution by using the mountain-pass lemma and a global compactness result. The case N = 3 is quite different and we deal with this case by using the method in Jannelli (1999) [20] to prove the existence result. Moreover, we obtain the nonexistence result of (0.1) in a star shaped domain. Our main results extend a recent result of Castorina et al. (2009) [10] where $\lambda = 0$ and $\Omega = \mathbb{R}^{N}$.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a smooth bounded domain of $\mathbb{R}^N = \mathbb{R}^k \times \mathbb{R}^{N-k}$, with $2 \le k < N, N \ge 3$. Suppose for some $(0, z_0) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$ such that $(0, z_0) \in \Omega$. Without loss of generality we suppose $0 \in \Omega$. Denote a point $x \in \mathbb{R}^N$ by $x = (y, z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$. In this paper, we consider the following semilinear elliptic equation with the Sobolev–Hardy term

$$\begin{cases} -\Delta u - \lambda u = \frac{u^{2^{\mu} - 1}}{|y|} & x \in \Omega, \\ u > 0, & x \in \Omega, \\ u \in H_0^1(\Omega), \end{cases}$$
(1.1)

where $2^{\sharp} := \frac{2(N-1)}{N-2}$ is the corresponding critical exponent, $0 < \lambda < \lambda_1, \lambda_1$ is the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$. This problem is the Euler–Lagrange equation of the Hardy–Sobolev–Maz'ya inequality

$$C\left(\int_{\Omega} \frac{|u|^{2^{\sharp}}}{|y|} \mathrm{d}y\mathrm{d}z\right)^{\frac{2}{2^{\sharp}}} \leq \int_{\Omega} [|\nabla u|^2 - \lambda u^2] \mathrm{d}y\mathrm{d}z, \quad \forall u \in C_0^{\infty}(\Omega)$$
(1.2)

* Corresponding author. Tel.: +86 2767863871. *E-mail address:* alati2005@yahoo.com (A. Al-aati).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.057