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a b s t r a c t

In this paper, we study the existence of positive solutions to the following semilinear
elliptic equation with a Sobolev–Hardy term

−∆u − λu =
u2♯−1

|y|
x ∈ Ω,

u > 0, x ∈ Ω,

u ∈ H1
0 (Ω),

(0.1)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 3), x = (y, z) ∈ Ω ⊂

Rk
× RN−k

= RN , 2 ≤ k < N , 2♯ :=
2(N−1)
N−2 is the corresponding critical exponent and

0 < λ < λ1 where λ1 is the first eigenvalue of −∆ in H1
0 (Ω). When N ≥ 4, we prove that

problem (0.1) has at least one positive solution by using the mountain-pass lemma and a
global compactness result. The case N = 3 is quite different and we deal with this case by
using themethod in Jannelli (1999) [20] to prove the existence result. Moreover, we obtain
the nonexistence result of (0.1) in a star shaped domain. Our main results extend a recent
result of Castorina et al. (2009) [10] where λ = 0 andΩ = RN .
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1. Introduction

LetΩ be a smooth bounded domain of RN
= Rk

× RN−k, with 2 ≤ k < N,N ≥ 3. Suppose for some (0, z0) ∈ Rk
× RN−k

such that (0, z0) ∈ Ω . Without loss of generality we suppose 0 ∈ Ω . Denote a point x ∈ RN by x = (y, z) ∈ Rk
× RN−k.

In this paper, we consider the following semilinear elliptic equation with the Sobolev–Hardy term
−1u − λu =

u2♯−1

|y|
x ∈ Ω,

u > 0, x ∈ Ω,

u ∈ H1
0 (Ω),

(1.1)

where 2♯ :=
2(N−1)
N−2 is the corresponding critical exponent, 0 < λ < λ1, λ1 is the first eigenvalue of −∆ in H1

0 (Ω). This
problem is the Euler–Lagrange equation of the Hardy–Sobolev–Maz’ya inequality

C

∫
Ω

|u|2
♯

|y|
dydz

 2
2♯

≤

∫
Ω

[|∇u|2 − λu2
]dydz, ∀u ∈ C∞

0 (Ω) (1.2)
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