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a b s t r a c t

In this paper, the following problem is considered:−∆pu − µ
|u|p−2u

|x|p
= λf (x)|u|q−2u + g(x)|u|p

∗
−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN is a bounded domain such that 0 ∈ Ω , 1 < q < p, λ > 0, µ < µ̄, f and
g are nonnegative functions, µ̄ = (

N−p
p )p is the best Hardy constant and p∗

=
Np
N−p is the

critical Sobolev exponent. By extracting the Palais–Smale sequence in the Nehari manifold,
the existence of multiple positive solutions to this equation is verified.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the following problem:−∆pu − µ
|u|p−2u

|x|p
= λf (x)|u|q−2u + g(x)|u|p

∗
−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ p2) is a bounded domain with the smooth boundary ∂Ω such that 0 ∈ Ω , ∆pu = div(|∇u|p−2
∇u)

is the p-Laplacian operator, 1 < q < p, λ > 0, µ < µ̄, f and g are nonnegative functions, µ̄ = (
N−p
p )p is the best Hardy

constant and p∗
=

Np
N−p is the critical Sobolev exponent.

Let W 1,p
0 (Ω) be the completion of C∞

0 (Ω) with respect to the norm (

Ω

|∇u|p dx)1/p. The energy functional of (1.1) is
defined onW 1,p

0 (Ω) by

Jλ(u) =
1
p

∫
Ω


|∇u|p − µ

|u|p

|x|p


dx −

λ

q

∫
Ω

f |u|qdx −
1
p∗

∫
Ω

g|u|p
∗

dx.

Then Jλ ∈ C1(W 1,p
0 (Ω),R).u ∈ W 1,p

0 (Ω) \ {0} is said to be a solution of (1.1) if ⟨J ′λ(u), v⟩ = 0 for all v ∈ W 1,p
0 (Ω) and a

solution of (1.1) is a critical point of Jλ.
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