Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term

Li Wang ${ }^{\text {a }}$, Qiaoling Wei ${ }^{\text {b }}$, Dongsheng Kang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, PR China

A R TICLE INFO

Article history:

Received 21 June 2010
Accepted 8 September 2010

Keywords:

Solution
Critical exponent
Hardy inequality
Concave-convex
Variational method

A B S TRACT

In this paper, the following problem is considered:

$$
\begin{cases}-\Delta_{p} u-\mu \frac{|u|^{p-2} u}{|x|^{p}}=\lambda f(x)|u|^{q-2} u+g(x)|u|^{p^{*}-2} u, & x \in \Omega \\ u=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain such that $0 \in \Omega, 1<q<p, \lambda>0, \mu<\bar{\mu}, f$ and g are nonnegative functions, $\bar{\mu}=\left(\frac{N-p}{p}\right)^{p}$ is the best Hardy constant and $p^{*}=\frac{N p}{N-p}$ is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the existence of multiple positive solutions to this equation is verified.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the following problem:

$$
\begin{cases}-\Delta_{p} u-\mu \frac{|u|^{p-2} u}{|x|^{p}}=\lambda f(x)|u|^{q-2} u+g(x)|u|^{p^{*}-2} u, & x \in \Omega \tag{1.1}\\ u=0, & x \in \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}\left(N \geq p^{2}\right)$ is a bounded domain with the smooth boundary $\partial \Omega$ such that $0 \in \Omega, \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator, $1<q<p, \lambda>0, \mu<\bar{\mu}, f$ and g are nonnegative functions, $\bar{\mu}=\left(\frac{N-p}{p}\right)^{p}$ is the best Hardy constant and $p^{*}=\frac{N p}{N-p}$ is the critical Sobolev exponent.

Let $W_{0}^{1, p}(\Omega)$ be the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm $\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x\right)^{1 / p}$. The energy functional of (1.1) is defined on $W_{0}^{1, p}(\Omega)$ by

$$
J_{\lambda}(u)=\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}-\mu \frac{|u|^{p}}{|x|^{p}}\right) \mathrm{d} x-\frac{\lambda}{q} \int_{\Omega} f|u|^{q} \mathrm{~d} x-\frac{1}{p^{*}} \int_{\Omega} g|u|^{p^{*}} \mathrm{~d} x .
$$

Then $J_{\lambda} \in C^{1}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right) . u \in W_{0}^{1, p}(\Omega) \backslash\{0\}$ is said to be a solution of (1.1) if $\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=0$ for all $v \in W_{0}^{1, p}(\Omega)$ and a solution of (1.1) is a critical point of J_{λ}.

[^0]
[^0]: * Corresponding author. Tel.: +86 02762871203 ; fax: +86 02762871203.

 E-mail address: dongshengkang@yahoo.com.cn (D. Kang).

