Contents lists available at ScienceDirect

Nonlinear Analysis

Multiple positive solutions for *p*-Laplace elliptic equations involving concave–convex nonlinearities and a Hardy-type term

Li Wang^a, Qiaoling Wei^b, Dongsheng Kang^{b,*}

^a School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China ^b School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, PR China

ARTICLE INFO

Article history: Received 21 June 2010 Accepted 8 September 2010

Keywords: Solution Critical exponent Hardy inequality Concave-convex Variational method

ABSTRACT

In this paper, the following problem is considered:

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = \lambda f(x)|u|^{q-2}u + g(x)|u|^{p^*-2}u, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain such that $0 \in \Omega$, 1 < q < p, $\lambda > 0$, $\mu < \bar{\mu}$, f and g are nonnegative functions, $\bar{\mu} = (\frac{N-p}{p})^p$ is the best Hardy constant and $p^* = \frac{Np}{N-p}$ is the critical Sobolev exponent. By extracting the Palais–Smale sequence in the Nehari manifold, the existence of multiple positive solutions to this equation is verified.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the following problem:

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = \lambda f(x)|u|^{q-2}u + g(x)|u|^{p^*-2}u, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ $(N \ge p^2)$ is a bounded domain with the smooth boundary $\partial \Omega$ such that $0 \in \Omega$, $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian operator, 1 < q < p, $\lambda > 0$, $\mu < \overline{\mu}$, f and g are nonnegative functions, $\overline{\mu} = (\frac{N-p}{p})^p$ is the best Hardy constant and $p^* = \frac{Np}{N-p}$ is the critical Sobolev exponent.

Let $W_0^{1,p}(\Omega)$ be the completion of $C_0^{\infty}(\Omega)$ with respect to the norm $(\int_{\Omega} |\nabla u|^p dx)^{1/p}$. The energy functional of (1.1) is defined on $W_0^{1,p}(\Omega)$ by

$$J_{\lambda}(u) = \frac{1}{p} \int_{\Omega} \left(|\nabla u|^p - \mu \frac{|u|^p}{|x|^p} \right) \mathrm{d}x - \frac{\lambda}{q} \int_{\Omega} f|u|^q \mathrm{d}x - \frac{1}{p^*} \int_{\Omega} g|u|^{p^*} \mathrm{d}x.$$

Then $J_{\lambda} \in C^1(W_0^{1,p}(\Omega), \mathbb{R}).u \in W_0^{1,p}(\Omega) \setminus \{0\}$ is said to be a solution of (1.1) if $\langle J'_{\lambda}(u), v \rangle = 0$ for all $v \in W_0^{1,p}(\Omega)$ and a solution of (1.1) is a critical point of J_{λ} .

^{*} Corresponding author. Tel.: +86 02762871203; fax: +86 02762871203. *E-mail address*: dongshengkang@yahoo.com.cn (D. Kang).

⁰³⁶²⁻⁵⁴⁶X/ $\$ - see front matter $\$ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.09.017