Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A Browder degree theory from the Nagumo degree on the Hilbert space of elliptic super-regularization

Athanassios G. Kartsatos*, David Kerr

Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA

ARTICLE INFO

Article history: Received 24 November 2009 Accepted 4 September 2010

MSC: primary 47H14 secondary 47H05 47H11

Keywords: Browder degree theory Nagumo degree theory Skrypnik degree theory Maximal monotone operator Bounded demicontinuous operator of type (S_+) Compact operator Elliptic super-regularization

ABSTRACT

Let *X* be a real reflexive separable locally uniformly convex Banach space with locally uniformly convex dual space X^* . Let $Q : H \to X$ be a linear compact injection, according to Browder and Ton, such that $\overline{Q(H)} = X$, where *H* is a real separable Hilbert space. A degree mapping *d* on *X* is constructed from the Nagumo degree d_{NA} on *H* by

$$d(T+f, G, 0) := \lim_{t \to 0} d_{NA} \left(I + \frac{1}{t} Q^* (T_t + f) Q, Q^{-1} G, 0 \right)$$

where $G \subset X$ is open and bounded, T_t is the resolvent $(T^{-1} + tJ^{-1})^{-1}$ of a strongly quasibounded maximal monotone operator $T : X \supset D(T) \rightarrow 2^{X^*}$ with $0 \in T(0)$, and $f : \overline{G} \rightarrow X^*$ is demicontinuous, bounded and of type (S_+) . A "range of sums" result is also given, using the Skrypnik degree theory, in order to further exhibit the methodology of "elliptic super-regularization".

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction – preliminaries

Unless otherwise stated, the symbol X stands for a real reflexive locally uniformly convex Banach space with locally uniformly convex dual space X^* . The symbols $\|\cdot\|_X$ and $\|\cdot\|_{X^*}$ stand for the norms of X and X^* , respectively and $J : X \to X^*$ is the normalized duality mapping. The symbol H is reserved for a real separable Hilbert space. In what follows, "continuous" means "strongly continuous" and the symbol " \rightarrow " (" \rightarrow ") means strong (weak) convergence. Also, "demicontinuous" means

strong-to-weak continuous. The symbol $\mathcal{R}(\mathcal{R}_+)$ stands for the set $(-\infty, \infty)$ ([0, ∞)) and the symbols ∂D , D, \overline{D} , denote the strong boundary, interior and closure of the set D, respectively. We denote by $B_r(0)$ the open ball of X, or X^* , or H with center at zero and radius r > 0.

For an operator $T : X \to 2^{X^*}$ we denote by D(T) the effective domain of T, i.e. $D(T) = \{x \in X : Tx \neq \emptyset\}$. We denote by G(T) the graph of T, i.e. $G(T) = \{(x, y) : x \in D(T), y \in Tx\}$. An operator $T : X \supset D(T) \to 2^{X^*}$ is called "monotone" if for every $x, y \in D(T)$ and every $u \in Tx, v \in Ty$ we have

$$|u-v, x-y\rangle \geq 0$$

A monotone operator *T* is "maximal monotone" if *G*(*T*) is maximal in $X \times X^*$, when $X \times X^*$ is partially ordered by inclusion. In our setting, a monotone operator *T* is maximal if and only if $R(T + \lambda J) = X^*$ for all $\lambda \in (0, \infty)$. If *T* is maximal monotone, then the operator $T_t \equiv (T^{-1} + tJ^{-1})^{-1} : X \to X^*$ is bounded, demicontinuous, maximal monotone and such that $T_t X \rightharpoonup T^{\{0\}} X$

* Corresponding author. Tel.: +1 813 974 2643; fax: +1 813 974 2700.

E-mail addresses: hermes@usf.edu, hermes@math.usf.edu (A.G. Kartsatos), kerr@eckerd.edu (D. Kerr).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.09.005