Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

An extension of Dickstein's "small lambda" theorem for finite time blowup

Tei-eddine Ghoul*

Laboratoire Analyse, Géometrie et Applications, UMR 7539, Institut Galilée, Université Paris, 13 99 avenue J.B. Clement, F-93430 Villetaneuse, France

ARTICLE INFO	ABSTRACT
<i>Article history:</i> Received 19 May 2011 Accepted 31 May 2011 Communicated by Enzo Mitidieri	In this paper we prove for $1 , \varphi \in L^1(\mathbb{R}^N) with \int_{\mathbb{R}^N} \varphi = 0 and \zeta \in C_0(\mathbb{R}^N) \cap W^{1,1}(\mathbb{R}^N) with \int_{\mathbb{R}^N} \zeta \neq 0 such that \varphi = \partial_j \zeta that there exists \underline{\lambda} > 0 such that the solution u of the equation u_t - \Delta u = u ^{p-1}u with u(0) = \lambda \varphi blows up in finite time for all 0 < \lambda < \underline{\lambda}. This extends a similar result of Dickstein who treated the case \int_{\mathbb{R}^N} \varphi \neq 0$
Keywords:	and $1 .$

© 2011 Elsevier Ltd. All rights reserved.

Blowup Local existence Rescaling Weak initial data Sign-changing solutions Nonlinear heat equation

1. Introduction

We study here the finite-time blowup of the solutions of the following equation

$$\begin{cases} u_t - \Delta u = |u|^{p-1} u & \text{in } [0, T) \times \mathbb{R}^N \\ u(0, x) = u_0(x) \end{cases}$$
(1.1)

in \mathbb{R}^N with p > 1. Given $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$, we set $|x| = (x_1^2 + \cdots + x_N^2)^{1/2}$ and the first partial derivative of a function f on \mathbb{R}^N with respect to the *j*th variable x_i is denoted by $\partial_i f$. Now let us recall that for every $u_0 \in C_0(\mathbb{R}^N)$, the Banach space of continuous functions on \mathbb{R}^N that goes to zero at infinity, there exists a unique solution of (1.1) with the initial condition $u(0) = u_0$, which is defined on a maximal time interval $[0, T_{u_0}]$. T_{u_0} denotes the maximal existence time of the solution uwith corresponding initial value u_0 , i.e. $u \in C([0, T_{u_0}), C_0(\mathbb{R}^N))$. If $T_{u_0} < \infty$, then the solution blows up in finite time, i.e. $||u(t)||_{L^{\infty}} \to \infty$ as $t \to T_{u_0}$, and if $T_{u_0} = \infty$ then the solution is called global in time. The main result of this paper is the following.

Theorem 1. Let $1 , and let <math>\varphi \in L^1(\mathbb{R}^N) \cap C_0(\mathbb{R}^N)$ satisfy $\int_{\mathbb{R}^N} \varphi = 0$ and let $\zeta \in C_0(\mathbb{R}^N) \cap W^{1,1}(\mathbb{R}^N)$ satisfy $\int_{\mathbb{R}^N} \zeta \neq 0$ such that $\varphi = \partial_i \zeta$.

Given $\lambda > 0$ let u_{λ} be the solution of (1.1) corresponding to $u_0 = \lambda \varphi$. Then there exists λ such that u_{λ} blows up in finite time for all $0 < \lambda < \lambda$.

This result is motivated by a recent paper of Dickstein [1], but the question goes back to Fujita's classical result [2] in 1966. Indeed, Fujita proved that if

$$p < p_F = 1 + \frac{2}{N}$$

Tel.: +33 624835703. E-mail address: ghoul@math.univ-paris13.fr.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.089