Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Positive solutions for a fourth order *p*-Laplacian boundary value problem^{*}

Jiafa Xu*, Zhilin Yang

Department of Mathematics, Qingdao Technological University, No 11 Fushun Road, Qingdao, Shandong Province, PR China

ARTICLE INFO

Article history: Received 12 July 2010 Accepted 16 December 2010

MSC: 34B18 47H07 47H11 45M20 26D15

Keywords: p-Laplacian equation Positive solution Fixed point index Upper and lower solution Iterative sequence

1. Introduction

ABSTRACT

In this paper, we study the existence, multiplicity and uniqueness of positive solutions for the fourth order *p*-Laplacian boundary value problem

$$\begin{aligned} & (|u''|^{p-1}u'')'' = f(t, u), \\ & u^{(2i)}(0) = u^{(2i)}(1) = 0, \quad i = 0, 1 \end{aligned}$$

Here p > 0 and $f \in C([0, 1] \times \mathbb{R}^+, \mathbb{R}^+)$ ($\mathbb{R}^+ := [0, \infty)$). Based on a priori estimates achieved by utilizing properties of concave functions, we use fixed point index theory to establish our main results.

© 2010 Elsevier Ltd. All rights reserved.

In this paper, we study the existence, multiplicity and uniqueness of positive solutions for the fourth order *p*-Laplacian boundary value problem

$$\begin{cases} (|u''|^{p-1}u'')'' = f(t, u), & t \in (0, 1), \\ u^{(2i)}(0) = u^{(2i)}(1) = 0, & i = 0, 1, \end{cases}$$
(1.1)

where p > 0 and $f \in C([0, 1] \times \mathbb{R}^+, \mathbb{R}^+)$ ($\mathbb{R}^+ := [0, \infty)$). Note that by a positive solution of (1.1) we mean a function $u \in C^2[0, 1] \cap C^4(0, 1)$ that solves (1.1) and satisfies $|u''|^{p-1}u'' \in C^2(0, 1)$ and u(t) > 0, $t \in (0, 1)$.

Second order differential equations with the *p*-Laplacian operator arise in modeling different physical and natural phenomena, which can be encountered in, for instance, non-Newtonian mechanics, nonlinear elasticity, glaciology, population biology, combustion theory, and nonlinear flow laws, see [1,2]. This explains why many papers have been published on existence of solutions for differential equations with the *p*-Laplacian operator; see, for instance, [3–14] and references therein. Fourth order boundary value problems, including those with the *p*-Laplacian operator, have their origin in beam theory [15,16], ice formation [17,18], fluids on lungs [19], brain warping [20,21], designing special curves on surfaces [22,20], etc. In beam theory, more specifically, a beam with a small deformation, a beam of a material which

 ^{*} Supported by the NNSF of China (Grant 10871116 and 10971179) and the NSF of Shandong Province of China (Grant ZR2009AL014).
* Corresponding author.

E-mail addresses: xujiafa292@sina.com, jiafaxu@sina.cn (J. Xu), zhilinyang@sina.com, zhilinyang@ymail.com (Z. Yang).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.12.016