Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A proof of Hessian Sobolev inequality

Shuxuan Li*

Wuhan Institute of Physics and Mathematics (WIPM), Chinese Academy of Sciences (CAS), Wuhan 430071, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 16 June 2010 Accepted 9 March 2011 Accepting Editor: Ravi Agarwal

Keywords: Hessian Sobolev inequality Hessian equation A priori estimates

1. Introduction

First we introduce some standard notations and definitions, which can be found in [1,2]. Suppose Ω is a bounded smooth domain in \mathbb{R}^n , for a function $u \in C^2(\Omega)$, we define the k-Hessian operator $S_k(D^2u)$ by

is optimal by one-dimensional Hardy's inequality.

In this paper, taking the Hessian Sobolev inequality (0 (X.-J. Wang, 1994 [2]) as

the starting point, we give a proof of the Hessian Sobolev inequality when k ,

where k^* is the critical Sobolev embedding index of k-Hessian type. We also prove that k^*

$$S_k(D^2u) = S_k(\lambda(D^2u)),$$

where $1 \le k \le n, \lambda = (\lambda_1, \dots, \lambda_n)$ denotes the eigenvalues of the Hessian matrix of *u*, namely, D^2u . S_k is a *k*th elementary function on \mathbb{R}^n , given by

$$S_k(\lambda) = \sum_{i_1 < \dots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}.$$
(1.2)

Alternatively, $S_k(D^2u)$ can be written as the sum of the $k \times k$ principal minors of D^2u . When k = 1, $S_k(D^2u) = \Delta u$ is the Laplace operator, when k = n, $S_k(D^2u) = \det(D^2u)$ is the Monge–Ampere operator.

As is well known, the k-Hessian equation $(k \ge 2)$ is a class of fully nonlinear partial differential equations of second order. To work with the elliptic realm, we introduce the class of k-admissible functions. Following [3], a function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is called a k-admissible function if $\lambda(D^2u(x)), x \in \Omega$, belongs to the symmetric cone given by

$$\Gamma_k = \{\lambda \in \mathbb{R}^n : S_j(\lambda) > 0, \ j = 1, \dots, k\}.$$
(1.3)

The *k*-Hessian operator is elliptic at any *k*-admissible function *u*, i.e.

$$\{S_{ij}(D^2u)\} = \left\{\frac{\partial}{\partial r_{ij}}S_k(D^2u)\right\}$$

is positive definite.

We also need a geometric condition on the boundary $\partial \Omega$. A bounded domain Ω is strictly (k-1)-convex if $\partial \Omega$ satisfies

 $S_{k-1}(\kappa) \geq \delta_0 > 0$ (1.4)

Fax: +86 27 87199543.

© 2011 Elsevier Ltd. All rights reserved.

(1.1)

E-mail address: shuxuan.li@yahoo.com.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.03.017