A proof of Hessian Sobolev inequality

Shuxuan Li*
Wuhan Institute of Physics and Mathematics (WIPM), Chinese Academy of Sciences (CAS), Wuhan 430071, PR China

ARTICLE INFO

Article history:

Received 16 June 2010
Accepted 9 March 2011
Accepting Editor: Ravi Agarwal

Keywords:

Hessian Sobolev inequality
Hessian equation
A priori estimates

Abstract

In this paper, taking the Hessian Sobolev inequality ($0<p \leq k$) (X.-J. Wang, 1994 [2]) as the starting point, we give a proof of the Hessian Sobolev inequality when $k<p \leq k^{*}$, where k^{*} is the critical Sobolev embedding index of k-Hessian type. We also prove that k^{*} is optimal by one-dimensional Hardy's inequality.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

First we introduce some standard notations and definitions, which can be found in [1,2].
Suppose Ω is a bounded smooth domain in \mathbb{R}^{n}, for a function $u \in C^{2}(\Omega)$, we define the k-Hessian operator $S_{k}\left(D^{2} u\right)$ by

$$
\begin{equation*}
S_{k}\left(D^{2} u\right)=S_{k}\left(\lambda\left(D^{2} u\right)\right) \tag{1.1}
\end{equation*}
$$

where $1 \leq k \leq n, \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ denotes the eigenvalues of the Hessian matrix of u, namely, $D^{2} u$. S_{k} is a k th elementary function on \mathbb{R}^{n}, given by

$$
\begin{equation*}
S_{k}(\lambda)=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \cdots \lambda_{i_{k}} \tag{1.2}
\end{equation*}
$$

Alternatively, $S_{k}\left(D^{2} u\right)$ can be written as the sum of the $k \times k$ principal minors of $D^{2} u$. When $k=1, S_{k}\left(D^{2} u\right)=\Delta u$ is the Laplace operator, when $k=n, S_{k}\left(D^{2} u\right)=\operatorname{det}\left(D^{2} u\right)$ is the Monge-Ampere operator.

As is well known, the k-Hessian equation $(k \geq 2)$ is a class of fully nonlinear partial differential equations of second order. To work with the elliptic realm, we introduce the class of k-admissible functions. Following [3], a function $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is called a k-admissible function if $\lambda\left(D^{2} u(x)\right), x \in \Omega$, belongs to the symmetric cone given by

$$
\begin{equation*}
\Gamma_{k}=\left\{\lambda \in \mathbb{R}^{n}: S_{j}(\lambda)>0, j=1, \ldots, k\right\} . \tag{1.3}
\end{equation*}
$$

The k-Hessian operator is elliptic at any k-admissible function u, i.e.

$$
\left\{S_{i j}\left(D^{2} u\right)\right\}=\left\{\frac{\partial}{\partial r_{i j}} S_{k}\left(D^{2} u\right)\right\}
$$

is positive definite.
We also need a geometric condition on the boundary $\partial \Omega$. A bounded domain Ω is strictly ($k-1$)-convex if $\partial \Omega$ satisfies

$$
\begin{equation*}
S_{k-1}(\kappa) \geq \delta_{0}>0 \tag{1.4}
\end{equation*}
$$

[^0]
[^0]: * Fax: +86 2787199543.

 E-mail address: shuxuan.li@yahoo.com.

