Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Maximal monotonicity for the sum of two subdifferential operators in L^p -spaces

Goro Akagi

Department of Machinery and Control Systems, School of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

ARTICLE INFO

Article history: Received 8 February 2010 Accepted 18 October 2010

This paper is dedicated to the memory of Professor Yukio Kōmura.

MSC: 47H05 47J05 35J92

Keywords: Maximal monotone Subdifferential Banach space Nonlinear elliptic operator

1. Introduction

Let *E* and *E*^{*} be a real reflexive Banach space and its dual space, respectively, and let $\phi_1, \phi_2 : E \to (-\infty, \infty]$ be proper (i.e., $\phi_1, \phi_2 \neq \infty$) lower semicontinuous convex functionals with the effective domains $D(\phi_i) := \{u \in E; \phi_i(u) < \infty\}$ for i = 1, 2. Then the subdifferential operator $\partial_E \phi_i : E \to 2^{E^*}$ of ϕ_i is defined by

$$\partial_E \phi_i(u) := \left\{ \xi \in E^*; \ \phi_i(v) - \phi_i(u) \ge \langle \xi, v - u \rangle_E \text{ for all } v \in D(\phi_i) \right\},\$$

where $\langle \cdot, \cdot \rangle_E$ denotes the duality pairing between *E* and *E*^{*}, with the domain $D(\partial_E \phi_i) = \{u \in D(\phi_i); \partial_E \phi_i(u) \neq \emptyset\}$ for i = 1, 2. This paper provides a new sufficient condition for the maximal monotonicity of the sum $\partial_E \phi_1 + \partial_E \phi_2$ in $E \times E^*$ and an application to nonlinear elliptic operators in L^p -spaces.

This paper is motivated by the question of whether the following operator \mathcal{M} is maximal monotone in $L^p(\Omega) \times L^{p'}(\Omega)$ with $p \in [2, \infty)$, p' = p/(p-1) and a bounded domain Ω of \mathbb{R}^N :

$$\mathcal{M}: D(\mathcal{M}) \subset L^{p}(\Omega) \to L^{p'}(\Omega); \qquad u \mapsto -\Delta_{m}u + \beta(u(\cdot)), \tag{1}$$

where β is a maximal monotone graph in \mathbb{R} such that $\beta(0) \ni 0$, and Δ_m is a modified Laplacian given by

$$\Delta_m u = \nabla \cdot \left(|\nabla u|^{m-2} \nabla u \right), \quad 1 < m < \infty$$

ABSTRACT

This paper is devoted to providing a sufficient condition for the maximality of the sum of subdifferential operators defined on reflexive Banach spaces and proving the maximal monotonicity in $L^p(\Omega) \times L^{p'}(\Omega)$ of the nonlinear elliptic operator $u \mapsto -\Delta_m u + \beta(u(\cdot))$ with a maximal monotone graph β .

© 2010 Elsevier Ltd. All rights reserved.

E-mail address: g-akagi@shibaura-it.ac.jp.

⁰³⁶²⁻⁵⁴⁶X/ $\$ - see front matter $\$ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.037