Maximal monotonicity for the sum of two subdifferential operators in L^{p}-spaces

Goro Akagi

Department of Machinery and Control Systems, School of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

A R T I C L E I N F O

Article history:

Received 8 February 2010
Accepted 18 October 2010
This paper is dedicated to the memory of Professor Yukio Kōmura.

MSC:

47H05
47J05
35J92

Keywords:

Maximal monotone
Subdifferential
Banach space
Nonlinear elliptic operator

1. Introduction

Let E and E^{*} be a real reflexive Banach space and its dual space, respectively, and let $\phi_{1}, \phi_{2}: E \rightarrow(-\infty, \infty]$ be proper (i.e., $\phi_{1}, \phi_{2} \not \equiv \infty$) lower semicontinuous convex functionals with the effective domains $D\left(\phi_{i}\right):=\left\{u \in E ; \phi_{i}(u)<\infty\right\}$ for $i=1,2$. Then the subdifferential operator $\partial_{E} \phi_{i}: E \rightarrow 2^{E^{*}}$ of ϕ_{i} is defined by

$$
\partial_{E} \phi_{i}(u):=\left\{\xi \in E^{*} ; \phi_{i}(v)-\phi_{i}(u) \geq\langle\xi, v-u\rangle_{E} \text { for all } v \in D\left(\phi_{i}\right)\right\}
$$

where $\langle\cdot, \cdot\rangle_{E}$ denotes the duality pairing between E and E^{*}, with the domain $D\left(\partial_{E} \phi_{i}\right)=\left\{u \in D\left(\phi_{i}\right) ; \partial_{E} \phi_{i}(u) \neq \emptyset\right\}$ for $i=1,2$. This paper provides a new sufficient condition for the maximal monotonicity of the sum $\partial_{E} \phi_{1}+\partial_{E} \phi_{2}$ in $E \times E^{*}$ and an application to nonlinear elliptic operators in L^{p}-spaces.

This paper is motivated by the question of whether the following operator \mathcal{M} is maximal monotone in $L^{p}(\Omega) \times L^{p^{\prime}}(\Omega)$ with $p \in[2, \infty), p^{\prime}=p /(p-1)$ and a bounded domain Ω of \mathbb{R}^{N} :

$$
\begin{equation*}
\mathcal{M}: D(\mathcal{M}) \subset L^{p}(\Omega) \rightarrow L^{p^{\prime}}(\Omega) ; \quad u \mapsto-\Delta_{m} u+\beta(u(\cdot)), \tag{1}
\end{equation*}
$$

where β is a maximal monotone graph in \mathbb{R} such that $\beta(0) \ni 0$, and Δ_{m} is a modified Laplacian given by

$$
\Delta_{m} u=\nabla \cdot\left(|\nabla u|^{m-2} \nabla u\right), \quad 1<m<\infty
$$

[^0]
[^0]: E-mail address: g-akagi@shibaura-it.ac.jp.
 0362-546X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.na.2010.10.037

