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a b s t r a c t

This paper is devoted to providing a sufficient condition for the maximality of the sum
of subdifferential operators defined on reflexive Banach spaces and proving the maximal
monotonicity in Lp(Ω) × Lp

′

(Ω) of the nonlinear elliptic operator u → −∆mu + β(u(·))
with a maximal monotone graph β .
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1. Introduction

Let E and E∗ be a real reflexive Banach space and its dual space, respectively, and let φ1, φ2 : E → (−∞,∞] be proper
(i.e., φ1, φ2 ≢ ∞) lower semicontinuous convex functionals with the effective domains D(φi) := {u ∈ E;φi(u) < ∞} for
i = 1, 2. Then the subdifferential operator ∂Eφi : E → 2E∗

of φi is defined by

∂Eφi(u) :=

ξ ∈ E∗

; φi(v)− φi(u) ≥ ⟨ξ, v − u⟩E for all v ∈ D(φi)

,

where ⟨·, ·⟩E denotes the duality pairing between E and E∗, with the domain D(∂Eφi) = {u ∈ D(φi); ∂Eφi(u) ≠ ∅} for
i = 1, 2. This paper provides a new sufficient condition for the maximal monotonicity of the sum ∂Eφ1 + ∂Eφ2 in E × E∗ and
an application to nonlinear elliptic operators in Lp-spaces.

This paper is motivated by the question of whether the following operator M is maximal monotone in Lp(Ω) × Lp
′

(Ω)
with p ∈ [2,∞), p′

= p/(p − 1) and a bounded domainΩ of RN :

M : D(M) ⊂ Lp(Ω) → Lp
′

(Ω); u → −∆mu + β(u(·)), (1)

where β is a maximal monotone graph in R such that β(0) ∋ 0, and∆m is a modified Laplacian given by

∆mu = ∇ ·

|∇u|m−2

∇u

, 1 < m < ∞
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