Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition $\ensuremath{^{\ast}}$

Alexander Gladkov^{a,*}, Mohammed Guedda^b

^a Department of Mathematics, Vitebsk State University, Moskovskii pr. 33, 210038 Vitebsk, Belarus ^b Université de Picardie, LAMFA, CNRS, UMR 6140, 33 rue Saint-Leu, F-80039, Amiens, France

ARTICLE INFO

Article history: Received 22 January 2011 Accepted 6 April 2011 Communicated by Enzo Mitidieri

Keywords: Semilinear heat equation Nonlocal boundary condition Blow-up

1. Introduction

ABSTRACT

In this paper we consider a semilinear parabolic equation $u_t = \Delta u - c(x, t)u^p$ for $(x, t) \in \Omega \times (0, \infty)$ with nonlinear and nonlocal boundary condition $u|_{\partial\Omega \times (0,\infty)} = \int_{\Omega} k(x, y, t)u^l dy$ and nonnegative initial data where p > 0 and l > 0. We prove some global existence results. Criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data are also given.

© 2011 Elsevier Ltd. All rights reserved.

In this paper we consider the following nonlocal initial boundary value problem:

	$u_t = \Delta u - c(x, t)u^p$	for $x \in \Omega$, $t > 0$,	
+	$u(x,t) = \int_{-\infty}^{\infty} k(x,y,t) u^{l}(y,t) dy$	for $x \in \partial \Omega$, $t > 0$,	(1.1)
	$u(x,0) = \overset{J\Omega}{u_0}(x)$	for $x \in \Omega$,	

where Ω is a bounded domain in \mathbb{R}^n for $n \ge 1$ with smooth boundary $\partial \Omega$, p > 0 and l > 0. Here c(x, t) is a nonnegative locally Hölder continuous function defined for $x \in \overline{\Omega}$ and $t \ge 0$ and k(x, y, t) is a nonnegative continuous function defined for $x \in \partial \Omega$, $y \in \overline{\Omega}$ and $t \ge 0$. The initial datum $u_0(x)$ is a nonnegative continuous function satisfying the boundary condition at t = 0.

Many physical phenomena are formulated as nonlocal mathematical models [1–6]. Initial boundary value problem for diffusion and reaction–diffusion equations with linear boundary condition in the second equation of (1.1) has been analyzed by many authors (see, for example, [7–9] and the references therein). Some papers [10–12] deal with the initial boundary value problems with nonlinear and nonlocal boundary conditions. Recently, the initial boundary value problem for reaction–diffusion equation

 $u_t = \Delta u + c(x, t)u^p$ for $x \in \Omega$, t > 0

with a nonlocal boundary condition in (1.1) has been investigated in [13]. Global existence of solutions with any initial data has been proved for $\max(p, l) \le 1$. For the case $\max(p, l) > 1$ global existence and blow-up results depend on the behavior of the coefficients c(x, t) and k(x, y, t) as t tends to infinity.

 $^{^{}m int}$ This work was supported in part by DAI, UPJV Amiens and the Regional Council of Picardie.

^{*} Corresponding author. Tel.: +8 10 375 212 514558. E-mail addresses: gladkoval@mail.ru (A. Gladkov), Mohamed.guedda@u-picardie.fr (M. Guedda).

 $^{0362\}text{-}546X/\$$ – see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.027