Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Asymptotic properties in parabolic problems dominated by a *p*-Laplacian operator with localized large diffusion

Vera Lúcia Carbone, Cláudia Buttarello Gentile, Karina Schiabel-Silva*

Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13.565-905 São Carlos SP, Brazil

ARTICLE INFO

Article history: Received 17 September 2009 Accepted 16 March 2011 Communicated by Ravi Agarwal

Keywords: p-Laplacian Localized large diffusion Attractor Upper semicontinuity

1. Introduction

Let $\Omega \subset \mathbb{R}^n$, $n \ge 1$, be a smooth bounded domain with smooth boundary $\Gamma = \partial \Omega$, and $\lambda \in (0, 1]$ a parameter. In this work we study the asymptotic behavior of the solutions of the family of parabolic equations

1	$\int u_t^{\lambda} - \operatorname{div}(d_{\lambda}(x) \nabla u^{\lambda} ^{p-2}\nabla u^{\lambda}) + u^{\lambda} ^{p-2}u^{\lambda} = B(u^{\lambda})$	in Ω	
{	$u^{\lambda} = 0$	on Γ ,	(1.1)
	$u^{\lambda}(0) = u_{0}^{\lambda},$		

as $\lambda \to 0$. The parameter λ represents the fact that, as $\lambda \to 0$, the diffusion d_{λ} is going to infinity in a localized region Ω_0 inside the physical domain Ω . We assume that p > 2 and that *B* is globally Lipschitz and uniformly integrable.

Next we introduce some notation following [1]. Let Ω_0 be a smooth subdomain of Ω , with $\overline{\Omega}_0 \subset \overline{\Omega}$, $\Omega_0 = \bigcup_{i=1}^m \Omega_{0,i}$, where *m* is a positive integer and $\Omega_{0,i}$ are connected smooth subdomains of Ω with $\overline{\Omega}_{0,i} \cap \overline{\Omega}_{0,j} = \emptyset$, for $i \neq j$. Define $\Omega_1 = \Omega \setminus \overline{\Omega}_0$, and $\Gamma_{0,i} = \partial \Omega_{0,i}$, $\Gamma_0 = \bigcup_{i=1}^m \Gamma_{0,i}$ as the boundaries of $\Omega_{0,i}$ and Ω_0 , respectively. Notice that $\partial \Omega_1 = \Gamma \cup \Gamma_0$. The diffusion coefficients $d_{\lambda} : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ are bounded and smooth functions in Ω , satisfying

$$0 < m_0 \leq d_\lambda(x) \leq M_\lambda,$$

for all $x \in \Omega$ and $0 < \lambda \leq 1$. We also assume that the diffusion is large in Ω_0 as $\lambda \to 0$, or more precisely,

$$d_{\lambda}(x) \to \begin{cases} d_0(x), & \text{uniformly on } \Omega_1, (d_0 \in \mathbb{C}^1(\bar{\Omega}_1, (0, \infty))); \\ \infty, & \text{uniformly on compact subsets of } \Omega_0. \end{cases}$$

It is important to notice here that the assumption that $\Gamma \cap \Gamma_0 = \emptyset$, that is, the diffusion is large in the interior of Ω , is crucial in the development of our analysis.

* Corresponding author. Tel.: +55 16 33518220.

(1.2)

ABSTRACT

This paper is concerned with upper semicontinuity of the family of attractors associated with nonlinear reaction–diffusion equations with principal part governed by a degenerate *p*-Laplacian in which the diffusion d_{λ} blows up in localized regions inside the domain. © 2011 Elsevier Ltd. All rights reserved.

E-mail addresses: carbone@dm.ufscar.br (V.L. Carbone), gentile@dm.ufscar.br (C.B. Gentile), schiabel@dm.ufscar.br (K. Schiabel-Silva).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.03.028