Contents lists available at ScienceDirect

Nonlinear Analysis

Multiple periodic solutions of superlinear ordinary differential equations with a parameter^{*}

We study the existence of multiple 2π -periodic solutions of ordinary differential equation

 $-\ddot{x} = \lambda x + f(t, x)$ with superlinear terms via homological linking and Morse theory.

Jiabao Su*, Ruiyi Zeng

School of Mathematical Sciences, Capital Normal University, Beijing 100048, People's Republic of China

ARTICLE INFO

ABSTRACT

Article history: Received 10 February 2011 Accepted 20 June 2011 Communicated by Ravi Agarwal

MSC: 34C25 47130 58E05

Keywords: Ordinary differential equation Homological linking Morse theory

1. Introduction

••

In this paper we are concerned with the existence of 2π -periodic solutions of the ordinary differential equation

$$\begin{cases} -\ddot{x} = \lambda x + f(t, x), \\ x(0) = x(2\pi), & \dot{x}(0) = \dot{x}(2\pi), \end{cases}$$
(P_{\lambda})

where $\lambda \in \mathbb{R}$ is a parameter and the nonlinear term *f* satisfies the following conditions:

(f₁) $f \in C^1(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ is 2π -periodic in *t*. $(f_2) f(t, 0) = 0, f'_x(t, 0) = 0.$

(f₃) There exist $\overline{r} > 0$ and $\mu > 2$ such that

$$0 \leqslant \mu F(t,x) := \mu \int_0^x f(t,s) \, \mathrm{d}s \leqslant f(t,x)x, \qquad |x| \geqslant \overline{r}, \quad t \in [0,2\pi].$$

As $f(t, 0) \equiv 0$, $(P)_{\lambda}$ has a trivial solution $x \equiv 0$ for any parameter $\lambda \in \mathbb{R}$. Our interest is in the multiplicity of nontrivial 2π -periodic solutions of $(P)_{\lambda}$ for a certain range of the parameter. We will prove that $(P)_{\lambda}$ has at least three nontrivial 2π -periodic solutions when the parameter λ is close to any a fixed eigenvalue of the linear periodic boundary value problem

$$\begin{cases} -\ddot{x} = \mu x, \\ x(0) = x(2\pi), & \dot{x}(0) = \dot{x}(2\pi) \end{cases}$$
(L₀)

© 2011 Elsevier Ltd. All rights reserved.

Supported by NSFC10831005, KZ201010028027, SRFDP20070028004 and PHR201106118.

^{*} Corresponding author. Tel.: +86 10 68902352 414; fax: +86 10 68903637. E-mail address: sujb@mail.cnu.edu.cn (J. Su).

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.06.027