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a b s t r a c t

We study the limit cycles of generalized Kukles polynomial differential systems using
averaging theory of first and second order.
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1. Introduction

One of the main problems in the qualitative theory of real planar differential equations is the determination of limit
cycles. Limit cycles of planar vector fields were defined by Poincaré [1]. At the end of the 1920s van der Pol [2], Liénard [3]
and Andronov [4] proved that a closed orbit of a self-sustained oscillation occurring in a vacuum tube circuit was a limit cycle
as considered by Poincaré. After these works, the non-existence, existence, uniqueness and other properties of limit cycles
were studied extensively bymathematicians and physicists, andmore recently also by chemists, biologists, economists, etc.
(see for instance the books [5,6]).

The second part of the sixteenth Hilbert problem [7] is related to the least upper bound on the number of limit cycles
of polynomial vector fields having a fixed degree. This problem and the Riemann conjecture are the only two problems on
the list of Hilbert which have not been solved. Here we consider a very particular case of the sixteenth Hilbert problem; we
want to study the upper bound of the generalized Kukles polynomial differential system

ẍ = −y, ẏ = Q (x, y), (1)

whereQ (x, y) is a polynomialwith real coefficients of degree n. This systemwas introduced byKukles in [8], giving necessary
and sufficient conditions in order that the system

ẍ = −y, ẏ = x + a0y + a1x2 + a2xy + a3y2 + a4x3 + a5x2y + a6xy2 + a7y3, (2)

has a center at the origin.
Recently the question of the number of limit cycles of these systems has attracted increasing interest. In [9] Sadovskii

solves the center–focus problem for system (2) with a2a7 ≠ 0 and proves that systems (2) can have seven limit cycles.
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