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1. Introduction and main results

Let 2 C RN (N > 3) be a bounded domain with a smooth boundary; we are interested in the second-order asymptotic
behavior of the boundary blow-up solutions to the elliptic problems

{Au:b(x)f(u), X € £, (1.1

u(x) = oo, X €082,
where b € C%#*(£2) (1 € (0, 1)) is non-negative and satisfies
(b1) b(x) = kK*(d(x))(1 + cd’ + o(d?)) for some k € K, with | > 0,
where ¢, 6 > 0 are constants, and d(x) = dist(x, §2) for each x € £2. K, denotes the set of all positive non-decreasing
functions k € L1(0, ®) N C'(0, ®) which satisfy

K(t d [K(t t
im Q =0, lim — Q =1, whereK(t) = / k(s)ds.
t—~0+ k(t) t—0+ dt \ k(t) 0
For more propositions for X, refer to [1-3].

Throughout this paper, we will make the following assumption on the nonlinearly f:

(fi) f € C'[0, +00) and f (u)/u is increasing on (0, co);
(f2) f satisfies the Keller-Osserman condition [4,5],

o dt

1 ~F(t)

The boundary condition u(x) = co,x € 952 is to be understand as u — oo when d(x) = dist(x, d2) — 0+. The
solutions of problem (1.1) are called large solutions, boundary blow-up solutions or explosive solutions.

t
< 00, WwhereF(t) =/f(s)ds.
0
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