Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A second-order estimate for blow-up solutions of elliptic equations

Shuibo Huang*, Qiaoyu Tian, Shengzhi Zhang, Jinhua Xi

Department of Mathematics, Gansu Normal University for Nationalities, Hezuo Gansu, 747000, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 23 September 2010 Accepted 23 November 2010

Keywords: Boundary blow-up solutions Second-term asymptotic behavior Karamata regular variation theory We investigate second-term asymptotic behavior of boundary blow-up solutions to the problems $\Delta u = b(x)f(u), x \in \Omega$, subject to the singular boundary condition $u(x) = \infty$, in a bounded smooth domain $\Omega \subset \mathbb{R}^N$. b(x) is a non-negative weight function. The nonlinearly f is regularly varying at infinity with index $\rho > 1$ (that is $\lim_{u\to\infty} f(\xi u)/f(u) = \xi^{\rho}$ for every $\xi > 0$) and the mapping f(u)/u is increasing on $(0, +\infty)$. The main results show how the mean curvature of the boundary $\partial \Omega$ appears in the asymptotic expansion of the solution u(x). Our analysis relies on suitable upper and lower solutions and the Karamata regular variation theory.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let $\Omega \subset \mathbb{R}^N$ ($N \ge 3$) be a bounded domain with a smooth boundary; we are interested in the second-order asymptotic behavior of the boundary blow-up solutions to the elliptic problems

$$\begin{cases} \Delta u = b(x)f(u), & x \in \Omega, \\ u(x) = \infty, & x \in \partial\Omega, \end{cases}$$
(1.1)

where $b \in C^{0,\mu}(\overline{\Omega})$ ($\mu \in (0, 1)$) is non-negative and satisfies

$(b_1) \ b(x) = k^2(d(x))(1 + cd^{\theta} + o(d^{\theta}))$ for some $k \in \mathcal{K}_l$ with l > 0,

where $c, \theta > 0$ are constants, and $d(x) = \text{dist}(x, \partial \Omega)$ for each $x \in \Omega$. \mathcal{K}_l denotes the set of all positive non-decreasing functions $k \in L^1(0, \vartheta) \cap C^1(0, \vartheta)$ which satisfy

$$\lim_{t\to 0+} \frac{K(t)}{k(t)} = 0, \qquad \lim_{t\to 0+} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{K(t)}{k(t)}\right) = l, \quad \text{where } K(t) = \int_0^t k(s) \mathrm{d}s.$$

For more propositions for \mathcal{K}_l , refer to [1–3].

Throughout this paper, we will make the following assumption on the nonlinearly *f* :

 $(f_1) f \in C^1[0, +\infty)$ and f(u)/u is increasing on $(0, \infty)$; $(f_2) f$ satisfies the Keller–Osserman condition [4,5],

$$\int_{1}^{\infty} \frac{\mathrm{d}t}{\sqrt{F(t)}} < \infty, \quad \text{where } F(t) = \int_{0}^{t} f(s) \mathrm{d}s.$$

The boundary condition $u(x) = \infty$, $x \in \partial \Omega$ is to be understand as $u \to \infty$ when $d(x) = \text{dist}(x, \partial \Omega) \to 0+$. The solutions of problem (1.1) are called large solutions, boundary blow-up solutions or explosive solutions.

* Corresponding author. Tel.: +86 0941 15349091308.

E-mail addresses: huangshuibo2008@163.com (S. Huang), tianqiaoyu2004@163.com (Q. Tian).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.11.037