Geometrical coefficients and the structure of the fixed-point set of asymptotically regular mappings in Banach spaces

Jarosław Górnicki
Department of Mathematics, Rzeszów University of Technology, P.O. Box 85, 35-959 Rzeszów, Poland

ARTICLE INFO

Article history:

Received 13 March 2010
Accepted 28 September 2010

MSC:

primary 47H09
47H10
secondary 47B20
54C15
Keywords:
Asymptotically regular mapping
Retract
Asymptotic center
Fixed point
Uniformly convex Banach space
Opial's property
Opial's modulus
Weakly convergent sequence coefficient

Abstract

It is shown that if E is a separable and uniformly convex Banach space with Opial's property and C is a nonempty bounded closed convex subset of E, then for some asymptotically regular self-mappings of C the set of fixed points is not only connected but even a retract of C. Our results qualitatively complement, in the case of a uniformly convex Banach space, a corresponding result presented in [T. Domínguez, M.A. Japón, G. López, Metric fixed point results concerning measures of noncompactness mappings, in: W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publishers, Dordrecht, 2001, pp. 239-268].

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Asymptotic regularity is a fundamentally important concept in metric fixed-point theory (see [1-4] and the references therein). It was formally introduced by Browder and Petryshyn in 1966 [5].

Definition 1. Let (M, d) be a metric space. A mapping $T: M \rightarrow M$ is called asymptotically regular if $\lim _{n \rightarrow \infty} d\left(T^{n} x, T^{n+1} x\right)$ $=0$ for all $x \in M$.

Example 2. Let $T:[0,1] \rightarrow[0,1]$ be an arbitrary nonexpansive mapping. It is easy to check that $S=\frac{1}{2}(I+T)$ is also nonexpansive. Thus

$$
\left|S^{n+1} x-S^{n} x\right| \leqslant \cdots \leqslant\left|S^{2} x-S x\right| \leqslant|S x-x|
$$

Furthermore, S is a nondecreasing function. Indeed, if $x \leqslant y$ and $S x>S y$ we have $\frac{1}{2}(x+T x)>\frac{1}{2}(y+T y)$ which implies

$$
|T x-T y| \geqslant T x-T y>y-x=|x-y|
$$

[^0]
[^0]: E-mail addresses: gornicki@prz.edu.pl, gornicki@dnet.pl.
 0362-546X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.na.2010.09.059

