Critical exponents and critical dimensions for quasilinear elliptic problems

Yinbin Deng ${ }^{\text {a,* }}$, Jixiu Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Huazhong Normal University, Wuhan 430079, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Computer Science, Xiangfan University, Xiangfan, 441053, Hubei, PR China

A R TICLE INFO

Article history:

Received 24 November 2010
Accepted 21 February 2011
Communicated by: S. Ahmad

Keywords:

Sign-changing radial solutions
p-Laplace equations
Critical dimensions
Critical exponents

A B S TRACT

The main purpose of this paper is to discuss the critical dimension phenomenon for signchanging solutions of the following quasilinear elliptic problem involving critical Sobolev exponent:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=|u|^{p^{*}-2} u+\lambda|u|^{q-2} u, \quad x \in B_{1}, \\
\left.u\right|_{\partial B_{1}}=0,
\end{array}\right.
$$

where $B_{1} \subset \mathbb{R}^{N}$ is a unit ball centered at the origin, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \lambda>0$, $2 \leq p<N, p \leq q<p^{*}, p^{*}=\frac{N p}{N-p}$ is the critical Sobolev exponent for the embedding $W_{0}^{1, p}\left(B_{1}\right) \hookrightarrow L^{p^{*}}\left(B_{1}\right)$. We show that the above problem exists infinitely many sign-changing radial solutions if the space dimension $N>\frac{p(p q-q+1)}{1+(q-p)(p-1)}$.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

It is well known from the work of Brezis and Nirenberg [1] that the existence of positive solutions of semilinear elliptic equations involving critical exponents relate to the dimension of space. More specially, for the representative problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+|u|^{2^{*}-2} u \quad \text { in } \Omega \tag{1.1}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where Ω is a bounded smooth open subset of $\mathbb{R}^{N}, N \geq 3$ and $2^{*}=\frac{2 N}{N-2}$ is the critical exponent for Sobolev embedding. The following results were proved in [1].
(i) If $N \geq 4$, problem (1.1) has at least one positive solution $u \in H_{0}^{1}(\Omega)$ when $0<\lambda<\lambda_{1}$.
(ii) If $N=3$, problem (1.1) has at least one positive solution $u \in H_{0}^{1}(\Omega)$ when $\lambda_{*}<\lambda<\lambda_{1}$, where λ_{*} is a positive constant.
(iii) If $N=3$ and Ω is a ball, then $\lambda_{*}=\frac{1}{4} \lambda_{1}$, and problem (1.1) has no positive solution for $\lambda \leq \lambda_{*}$,
where λ_{1} is the first eigenvalue of the operator $-\Delta$ in Ω with Dirichlet boundary condition.
The preceding results show that the space dimension N plays a fundamental role when people seeks positive solutions of (1.1), in particular, the dimension $N=3$ is a special one, if compared with $N \geq 4$. According to the definition introduced by Pucci and Serrin (see [2], also see [3]), we shall say that $N=3$ is a critical dimension for problem (1.1). In the celebrated paper [2,3], a wide class of nonlinear critical elliptic problems which exhibit the phenomenon of critical dimensions have been studied.

[^0]
[^0]: * Corresponding author. Tel.: +86 2767862013.

 E-mail address: ybdeng@mail.ccnu.edu.cn (Y. Deng).

