Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/na

Critical exponents and critical dimensions for quasilinear elliptic problems

Yinbin Deng^{a,*}, Jixiu Wang^b

^a Department of Mathematics, Huazhong Normal University, Wuhan 430079, PR China
^b School of Mathematics and Computer Science, Xiangfan University, Xiangfan, 441053, Hubei, PR China

ARTICLE INFO

Article history: Received 24 November 2010 Accepted 21 February 2011 Communicated by: S. Ahmad

Keywords: Sign-changing radial solutions p-Laplace equations Critical dimensions Critical exponents

ABSTRACT

The main purpose of this paper is to discuss the critical dimension phenomenon for signchanging solutions of the following quasilinear elliptic problem involving critical Sobolev exponent:

$$\begin{aligned} -\Delta_p u &= |u|^{p^*-2}u + \lambda |u|^{q-2}u, \quad x \in B_1, \\ u|_{\partial B_1} &= 0, \end{aligned}$$

where $B_1 \subset \mathbb{R}^N$ is a unit ball centered at the origin, $\Delta_p u = div(|\nabla u|^{p-2}\nabla u), \lambda > 0$, $2 \leq p < N, p \leq q < p^*, p^* = \frac{Np}{N-p}$ is the critical Sobolev exponent for the embedding $W_0^{1, p}(B_1) \hookrightarrow L^{p^*}(B_1)$. We show that the above problem exists infinitely many sign-changing radial solutions if the space dimension $N > \frac{p(pq-q+1)}{1+(q-p)(p-1)}$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

It is well known from the work of Brezis and Nirenberg [1] that the existence of positive solutions of semilinear elliptic equations involving critical exponents relate to the dimension of space. More specially, for the representative problem

$$\begin{cases} -\Delta u = \lambda u + |u|^{2^* - 2} u & \text{in } \Omega, \\ u|_{\partial \Omega} = 0, \end{cases}$$
(1.1)

where Ω is a bounded smooth open subset of \mathbb{R}^N , $N \ge 3$ and $2^* = \frac{2N}{N-2}$ is the critical exponent for Sobolev embedding. The following results were proved in [1].

- (i) If $N \ge 4$, problem (1.1) has at least one positive solution $u \in H_0^1(\Omega)$ when $0 < \lambda < \lambda_1$.
- (ii) If N = 3, problem (1.1) has at least one positive solution $u \in H_0^1(\Omega)$ when $\lambda_* < \lambda < \lambda_1$, where λ_* is a positive constant. (iii) If N = 3 and Ω is a ball, then $\lambda_* = \frac{1}{4}\lambda_1$, and problem (1.1) has no positive solution for $\lambda \le \lambda_*$,

where λ_1 is the first eigenvalue of the operator $-\Delta$ in Ω with Dirichlet boundary condition.

The preceding results show that the space dimension N plays a fundamental role when people seeks positive solutions of (1.1), in particular, the dimension N = 3 is a special one, if compared with $N \ge 4$. According to the definition introduced by Pucci and Serrin (see [2], also see [3]), we shall say that N = 3 is a critical dimension for problem (1.1). In the celebrated paper [2,3], a wide class of nonlinear critical elliptic problems which exhibit the phenomenon of critical dimensions have been studied.

* Corresponding author. Tel.: +86 27 67862013. E-mail address: ybdeng@mail.ccnu.edu.cn (Y. Deng).

 $^{0362\}text{-}546X/\$$ – see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.02.032