The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximal monotone

Liangjin Yao

Mathematics, Irving K. Barber School, UBC, Kelowna, British Columbia V1V 1V7, Canada

A R T I CLE IN F O

Article history:

Received 15 August 2010
Accepted 31 May 2011
Communicated by Ravi Agarwal

MSC:

primary 47 H 05
secondary 49N15
52A41
90C25

Keywords:

Constraint qualification
Convex function
Convex set
Duality mapping
Fitzpatrick function
Linear relation
Maximal monotone operator
Monotone operator
Monotone operator of type (FPV)
Subdifferential operator

Abstract

The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximal monotone operators provided that Rockafellar's constraint qualification holds.

In this paper, we prove the maximal monotonicity of $A+B$ provided that A and B are maximal monotone operators such that $\operatorname{dom} A \cap \operatorname{int} \operatorname{dom} B \neq \varnothing, A+N_{\overline{\operatorname{dom} B}}$ is of type (FPV), and $\operatorname{dom} A \cap \overline{\operatorname{dom} B} \subseteq \operatorname{dom} B$. The proof utilizes the Fitzpatrick function in an essential way.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, we assume that X is a real Banach space with norm $\|\cdot\|$, that X^{*} is the continuous dual of X, and that X and X^{*} are paired by $\langle\cdot, \cdot\rangle$. Let $A: X \rightrightarrows X^{*}$ be a set-valued operator (also known as multifunction) from X to X^{*}, i.e., for every $x \in X, A x \subseteq X^{*}$, and let gra $A=\left\{\left(x, x^{*}\right) \in X \times X^{*} \mid x^{*} \in A x\right\}$ be the graph of A. Recall that A is monotone if

$$
\begin{equation*}
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0, \quad \forall\left(x, x^{*}\right) \in \operatorname{gra} A \forall\left(y, y^{*}\right) \in \operatorname{gra} A, \tag{1}
\end{equation*}
$$

and maximal monotone if A is monotone and A has no proper monotone extension (in the sense of graph inclusion). Let $A: X \rightrightarrows X^{*}$ be monotone and $\left(x, x^{*}\right) \in X \times X^{*}$. We say $\left(x, x^{*}\right)$ is monotonically related to gra A if

$$
\left\langle x-y, y-y^{*}\right\rangle \geq 0, \quad \forall\left(y, y^{*}\right) \in \operatorname{gra} A
$$

Let $A: X \rightrightarrows X^{*}$ be maximal monotone. We say A is of type $(F P V)$ if for every open convex set $U \subseteq X$ such that $U \cap \operatorname{dom} A \neq \varnothing$, the implication
$x \in U$ and $\left(x, x^{*}\right)$ is monotonically related to gra $A \cap U \times X^{*} \Rightarrow\left(x, x^{*}\right) \in \operatorname{gra} A$

[^0]
[^0]: E-mail addresses: ljinyao@interchange.ubc.ca, liangjinyao@gmail.com.
 0362-546X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.na.2011.05.093

