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1. Introduction

Let Ω be a bounded domain in Rn and let H1(Ω) be the first-order Sobolev space of functions u ∈ L2(Ω) whose
distributional gradient ∇u belongs to L2(Ω). If θ ∈ H1(Ω) and ψ is any function in Ω with values in R


{−∞,∞}, then

we write

L(v) =

∫
Ω

|∇v|2dx (1.1)

and

Kθ,ψ (Ω) = {v ∈ H1(Ω), v|∂Ω = θ, v ≥ ψ}. (1.2)

Obstacle problems naturally appear in the nonlinear potential theory and its applications include the study of fluid
filtration in porous media, constrained heating, elasto-plasticity, optimal control, and financial math. It arises when one
considers the shape taken by a soap film in a domain Ω ⊂ Rn whose boundary position is fixed (see Plateau’s problem),
with the added constraint that the membrane is constrained to lie above some obstacle ψ(x) in the interior of the domain
as well. In this case, the energy functional to be minimized is the surface area integral

J(v) =

∫
Ω


1 + |∇v|2dx.

This problem can be linearized in the case of small perturbations by expanding the energy functional in terms of its Taylor
series and taking the first term only, in which case the energy to be minimized is the standard Dirichlet energy (1.1) in
Ω ⊂ Rn where the functions v satisfy Dirichlet boundary conditions, and are in addition constrained to be greater than
some given obstacle function ψ , that is, to find a function u that minimizes L(v) in Kθ,ψ (Ω).
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Since Kθ,ψ (Ω) is a closed convex set, there is a unique function u that minimizes L(v) over all functions v belonging to
Kθ,ψ (Ω), which is usually called the solution to the obstacle problem (see [1,2] for the existence).

Regularity and integrability of solutions to obstacle problems were widely considered, here we just refer to [3–13]. For
example, it was shown in [7] that: let u be the solution of (1.1), (1.2) and θ, ψ ∈ C2(Ω), then there exist τ = τ(N, p) > 0,
α = α(N, p) > 0, ρ = ρ(Ω) and C1 = C(Ω,N, p, R), C2 = C(Ω,N, p)with R ∈ (0, 1) such that

‖u‖C1,τ (ΩR)
≤ C(‖θ‖C2(Ω) + ‖ψ‖C2(Ω)) (1.3)

and
‖u − θ‖C1,τ (Γρ ) ≤ C(‖θ‖C2(Ω) + ‖ψ‖C2(Ω)) (1.4)

whereΩR = {x ∈ Ω : dist(x, ∂Ω) > R} and Γρ = {x ∈ Ω : dist(x, ∂Ω) ≤ ρ}. That is, u ∈ C1,α(Ω) if θ, ψ ∈ C2(Ω).
In this paperwewill considerKθ,ψ (Ω)-obstacle problemonAp-weight property. Recall that aweight is a locally integrable

function on Rn that takes values in (0,∞) almost everywhere. A weight w is said to be of class Ap (1 < p < ∞) in Rn if it
satisfies the condition

[w]Ap = sup
B balls in RN


1
|B|

∫
B
w(x)dx


1
|B|

∫
B
w

−
1

p−1 dx
p−1

< ∞. (1.5)

[w]Ap is called the Ap-constant(or characteristic or norm) of weightw. A weightw is said to be of class Ap(Ω) (1 < p < ∞)
if

[w]Ap(Ω) = sup
B balls inΩ


1
|B|

∫
B
w(x)dx


1
|B|

∫
B
w

−
1

p−1 dx
p−1

< ∞. (1.6)

[w]Ap(Ω) is called the Ap-constant of weightw onΩ ⊂ Rn.
Muckenhoupt showed in [14] that the weights satisfying the Ap condition are exactly the weights for which the

Hardy–Littlewood maximal function

Mf (x) = sup
x∈B balls

1
|B|

∫
B
|f (y)|dy

is bounded on Lp(w). Besides that it was shown in [16] that translations, isotropic dilations, and scalar multiples of
Ap-weights are also Ap weights with the same Ap characteristic. An Ap-weight function has stability integrability, doubling
measure and reverse Hölder inequality properties. See more results about Ap-weight in [15–22].

A natural question is: how canwe find a nontrivial Ap-weight? To the best of our knowledge, the existence of a Ap-weight
function has been discussed in very few papers. We will partially answer this question in this following.

In this paper we address two questions associated with the Kθ,ψ (Ω)-obstacle and Ap-weight problem. The first question
is an existence problem for Ap-weight on a bounded domain. We show that under some natural assumptions a solution to
the Kθ,ψ (Ω)-obstacle problem belongs to an Ap(Ω)-weight class. This result can then be used to study the following whole
space Ap-weight existence problem. If we have Ap-weight function ψ on a bounded interval [a, b] ⊂ R1, i.e. ψ ∈ Ap([a, b]),
can we find an Ap-weight function ϕ ∈ Ap(R1) or other ones?

Stability and higher integrability of derivatives of solutions have been studied in [6,23] for obstacle problems, but for Ap-
weight obstacle problems a different approach must be employed. On the other hand, the existence of another Ap-weight
function has been shown in [16], which depends heavily on the exponents p and hence is different from ours. From the
definitions (1.5), (1.6), one can see that an Ap-weight is naturally an Ap(Ω)-weight, but how about the inverse? It was shown
in [24] that when a weight w belongs to Ap(Jk) on all its finite many finite measure intervals Jk with Ω =

m
k=0 Jk, then w

belongs to Ap(Ω). Unfortunately, we have only one finite measure interval [a, b] here and as it was remarked in [24] that
Ω = R is not trivial (see also the counterexample there). Hence, more care must be taken to get a Ap-weight on R from an
interval [a, b] ⊂ R.

From now on, u is a solution to (1.1) and (1.2) means that u is a function in Kθ,ψ that minimizes L(v) over all functions
v belonging to Kθ,ψ . We will assume that θ, ψ ∈ C2(Ω) to avoid complications.

More regularity results about the solutions of Kθ,ψ (Ω)-obstacle problem can be read as:

Lemma 1.1. Let u be the solution of (1.1), (1.2), then
(a) u stays between λ1 = min θ(∂Ω) and λ2 = max(θ(∂Ω), ψ(Ω))
(b) u is superharmonic, and spt(∆u) ⊂ {u = ψ}.

Proof. See Lemma 1 in [25]. �

Lemma 1.2. Up to C1,1, u is as regular as ψ . More precisely,
(a) Assume that ψ has a modulus of continuity σ(r), then u has modulus of continuity Cσ(2r).
(b) Assume now that ∇ψ has modulus of continuity σ(r), then ∇u has modulus of continuity Cσ(2r).

Proof. See Lemma 2.3 in [7]. �

A direct result reads as the following.
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Theorem 1.1. Let ψ(x) be of Ap(Ω) for some 1 < p < ∞. Suppose that min∂Ω θ(x) = C > 0, then the solution u
to (1.1), (1.2)must be of Ap(Ω).

Proof. Let C = min∂Ω θ(x) > 0. Since ψ ∈ C2(Ω), we have thatM = maxx∈Ω ψ(x) < ∞.
From Lemma 1.1, we have that 0 < C ≤ u ≤ max(C, M) < ∞, so

sup
B balls in �


1
|B|

∫
B
u(x)dx


1
|B|

∫
B
u−

1
p−1 dx

p−1

≤ max{1, M/C}

< ∞. �

The rest of the article is organized as follows. In Section 2 we collect a number of auxiliary facts and prove for Kθ,ψ (Ω)-
obstacle problem about Ap-weight onΩ ⊂ R1. In Section 3, we consider the problems on Rn for a radial case.

2. Ap-weight on R1

LetΩ = [a, b] be an interval in R. Without loss of generality, we assume thatΩ = [−1, 1]. And, we have the following
definition of Ap(Ω)-weight in R1.

Definition 2.1. For 1 < p < ∞, a functionw : [a, b] → R+

0 is called an Ap([a, b])-weight iff

Kw = sup
I⊂[a,b]


1
|I|

∫
I
w(x)dx


1
|I|

∫
I
w(x)−

1
p−1 dx


< ∞,

where I denotes an arbitrary subinterval of [a, b].

At first, we will show that u is positive inΩ , that is

Lemma 2.1. Suppose that u is a solution of the obstacle problem (1.1), (1.2) inΩ ⊂ R1 with ψ ∈ Ap(Ω), then u > 0 inΩ .

Proof. Since ψ ∈ C2(Ω) and ψ ∈ Ap(Ω) with Ω = [−1, 1], there exists a point x ∈ [−1, 1], such that ψ(x) =

maxx∈[−1,1] ψ(x) > 0. From Lemma 1.1, we know that u is superharmonic. By the weak maximum principle, it is not less
than the harmonic function f on [−1, x] with f (−1) = u(−1) ≥ 0 and f (x) = u(x) ≥ ψ(x) > 0 which is positive on
[−1, x], as is u on [−1, x]. Similarly, we have that u is positive on [x, 1], so u is positive onΩ = [−1, 1]. �

See [24] for the following pasting Ap-weight lemma.

Lemma 2.2. Let Ω be an open interval on R1, µ a Borel measure on Ω with spt µ = Ω . Assume that there exist some open
intervals J0, J1, . . . , Jm such that

(a) Ω =
m

k=0 Jk;
(b) J0, J1, . . . , Jm−1;
(c) w ∈ Ap,µ(Jk), for every k = 0, 1, . . . ,m;
(d) w ≠ 0 on Jk, for every k = 0, 1, . . . ,m − 1.

Then,w ∈ Ap,µ(Ω).

Our result about Ap(Ω)-weight on R1 can be read as:

Theorem 2.1. Let u be the solution of obstacle problem (1.1), (1.2) onΩ ⊂ R1 with ψ ∈ Ap(Ω), then u ∈ Ap(Ω).

Proof. For b = 1 ∈ ∂Ω . If θ(1) > 0, it is done near the point b = 1 from Lemma 1.1. For the case of θ(1) = 0, we have that

0 ≤ ψ(1) ≤ u(1) = θ(1) = 0.

By the regularity results of Lemma 1.2, u ∈ C1(Ω). Since u ≥ ψ onΩ , there exists an

ε1 = max{ε ∈ (0, 2); u ≡ ψ in (1 − ε, 1)}

or

ε2 = max{ε ∈ (0, 2); u > ψ in (1 − ε, 1)}.

Suppose the former case does, that is, there exists an ε1 ∈ (0, 2), such that u ≡ ψ in (1 − ε1, 1), then u ∈ Ap([1 − ε1, 1]).
Suppose the later case does, then uxx = 0 on [1 − ε2, 1] by Lemma 1.1(b) and u(1 − ε2) > 0 by Lemma 2.1. Hence we

have that

u(x) = k1x − 1

for x ∈ [1 − ε2, 1] with some k1 < 0, and it is obvious that u ∈ Ap[1 − ε2, 1].
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The same applies for u at {x = −1}, that is, either u ≡ ψ or u(x) = k2x + 1 with some k2 > 0 near the point {x = 1}, so
there exists an ε2 ∈ (0, 2), such that u ∈ Ap[−1,−1 + ε2] or there exists an ε1 ∈ (0, 2), such that u ∈ Ap[−1,−1 + ε1].

From the above, we have that: u ∈ Ap[−1,−1 + ε1] and u ∈ Ap[1 − ε2, 1]. Note that for any given ε ∈ (0, 1), we have
that u ∈ Ap[−1 + ε, 1 − ε] from Lemma 2.1. Then Lemma 2.2 implies that u ∈ Ap[−1, 1], i.e. u ∈ Ap(Ω). �

In the following, we will show that if an Ap([a, b])-weightψ is given on an interval [a, b], we can get an Ap-weight ψ on
R.

To guarantee that, we need the following result:

Lemma 2.3. Let 1 < p < ∞ and let w1 : [−a, 0] → [0,∞) andw2 : [0, a] → [0,∞) be Ap-weights. Define

w(x) =


w1(x), if x ∈ [−a, 0],
w2(x), if x ∈ [0, a].

Thenw : [−a, a] → [0,∞) is an Ap[a, b]-weight iff

0 < lim inf
ε→0

 ε
0 w(x)dx 0
ε
w(x)dx

< lim sup
ε→0

 ε
0 w(x)dx 0
ε
w(x)dx

< ∞.

Proof. See Theorem 3 in [26]. �

Now, we can prove that

Theorem 2.2. For any given ψ ∈ Ap([0, 1]) and any interval [a, b] ⊂ R1, we can get at least one nontrivial weight u, such that
u ∈ Ap([a, b]).

Proof. At first, we extend the definition domain of ψ from [0, 1] to the whole R1 by defining

ψ(x) = ψ(2k − x)

for x ∈ [k, 2k] with k ∈ N and x ∈ [2k, k] with k ∈ Z−.
Then we give two ways to get u ∈ Ap([a, b]) for any given [a, b] ⊂ R1. The two solutions, u, may be different.
The first way is to take a large enough m ∈ N such that [a, b] ⊂ [−m,m] and some nonnegative function θ , such

that θ(−m) ≥ 0 and θ(m) ≥ 0. Let u be the obstacle problem Kψm,θ ([−m,m]), where ψm is the restriction of ψ on
[−m,m], then ψ ∈ Ap([−m,m]) by Lemma 2.2 and u ∈ Ap([−m,m]) by Theorem 2.1. Then u ∈ Ap([a, b]) since
[u]Ap[a,b] ≤ [u]Ap[−m,m] < ∞.

The second way is to define uk to be the minimizer for the obstacle problem on [k, k + 1] for ψ ∈ Ap([k, k + 1])
and θ(k) ≥ 0 at each k ∈ N. Then each uk ∈ Ap([k, k + 1]) by Theorem 2.1 and we can paste finitely many uk to get
u ∈ Ap([−m,m]) for any givenm ∈ N such that [a, b] ⊂ [−m,m] by Lemma 2.2. Then, we also have a u ∈ Ap([a, b]). �

Remark 2.1. From the proof of Theorem 2.2, one can see that:

(a) Since the choice of θ is arbitrarily, by taking different θ , we can get different u ∈ Ap([a, b]) even if ψ is given.
(b) In fact, we get a u ∈ Ap(R) in the latter procedure. It is worth mentioning that in Lemma 2.2, Ω ⊂ R is bounded and

there are counterexamples to the weights pasting onto R (see Remark 7 in [24]).

3. Ap-weight on Rn for radial case

In this section, we consider Ap-weight onΩ = B1(0) ⊂ Rn. In this case, we assume that the obstacles θ andψ are radial
symmetry, that is, ψ(x) = ψ(|x|).

At first, we collect some facts for the solution u to the obstacle problem.

Lemma 3.1. Let u be the solution of the obstacle problem (1.1), (1.2) on B1(0) with θ and ψ are radial symmetry, then u must
be radial symmetry.

Proof. Since θ and ψ are radial symmetry, for any operator A on Rn with |Ax| = |x| for any x ∈ Rn, we get new functions
ψA and θA defined by

ψA(x) = ψ(Ax) = ψ(|Ax|) = ψ(|x|) = ψ(x)

and θA(x) = θ(Ax) = θ(x) for any x ∈ Rn.
Let uA be the solution of (1.1) on KψA,θA , it is obvious that

uA(x) = u(Ax), (3.1)

where u(Ax) is the solution of (1.1) with obstacle ψ(Ax) and θ(Ax).
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Since KψA,θA ≡ Kψ,θ is a convex set, by the uniqueness of the solution,

uA(x) = u(x). (3.2)

Now, (3.1) and (3.2) give that u(Ax) = u(x) for any operator Awith |Ax| = |x|. By the arbitrary nature of A, we have that u is
radial symmetry. �

Lemma 3.2. Suppose that u is a solution of the obstacle problem (1.1), (1.2) in B1(0) ⊂ Rn with ψ ∈ Ap(B1(0)) and θ, ψ are
radial symmetry, then u > 0 inΩ .

Proof. ψ ∈ Ap(B1(0)) implies that it is positive almost everywhere in B1(0), so there exists a point x ∈ B1/2(0), such
that ψ(x) > 0. Since u is superharmonic, by the weak maximum principle, it is not less than the harmonic function f on
B1(0) \ B|x|(0)with f (x) = u(|x|) ≥ 0 for any x ∈ RN with |x| = |x| and f (x) = u(x) ≥ 0 for any x ∈ RN with |x| = 1, which
is positive on B1(0) \ B|x|(0), so we have

u > 0 in B1(0) \ B|x|(0). (3.3)

Since u is theminimizer for (1.1) onKψ,θ (B1(0)), itmust be theminimizer for (1.1) onKψ,θ (B|x|(0)). Then, by Lemma1.1(a)
with θ(x) = u(x) for any |x| = |x|, it is obvious that

u(x) ≥ u(x) = u(|x|) > 0 (3.4)

for any x ∈ B|x|(0).
Combining (3.3) and (3.4) we get that u is positive everywhere in B1(0). �

Theorem 3.1. Let u be the solution of the obstacle problem (1.1), (1.2) on B1(0) with ψ ∈ Ap(B1(0)) for p > 2 and ψ, θ being
radial symmetry, we have that u ∈ Ap(B1(0)).

Proof. Suppose that θ(x) = θ(|x|) > 0 for any x ∈ B1(0). By Lemma 1.1, there exist C1, C2 > 0 such that 0 < C1 ≤ u(x) ≤

C2 < ∞, then it is obvious that u ∈ Ap(B1(0)).
For the case of θ(x) = 0 for |x| = 1, since ψ , θ and u are all radial symmetry and u(x) = θ(x) = ψ(x) = 0 for |x| = 1,

there is an ε1 > 0 or an ε2 > 0 as in the proof of Theorem 2.1 such that u ≡ ψ for all x ∈ B1(0) with |x| ∈ [1 − ε1, 1] or
ψ < u for all x ∈ B1(0)with |x| ∈ (1 − ε2, 1).

Case I: There exists an ε1 > 0 such that u ≡ ψ for |x| ∈ [1 − ε1, 1]. Then, for any Br(y) ⊂ B1(0).
(i) If r ≥ ε1/4, we have that

|Br(y)|−p
∫

Br (y)
udx

∫
Br (y)

u−
1

p−1 dx
p−1

≤ |Bε1/4|
−p
∫

Br (0)
udx

∫
Br (0)

u−
1

p−1 dx
p−1

≤ C
∫

Br (0)
u−

1
p−1 dx

p−1

, (3.5)

where we have used the results of Lemma 1.1 that u is bounded above by λ2, which depends only on ψ and θ . Hence, the
constant C in (3.5) is independent of r . Then, it is enough to show the integral on the right of the last inequality in (3.5) is
bounded.

Note that u is superharmonic, it must larger than the harmonic function f on B1(0) with f (1 − ε1) = u(1 − ε1) =

ψ(1 − ε1) ≥ 0 and f (1) = u(1) = ψ(1) = 0 which has the type of f (x) = C(|x|2−n
− 1) ≥ 0 for n ≥ 3 and

f (x) = C(1 − |x|) ≥ 0 for n = 2 when |x| ∈ [1 − ε1, 1]. We will consider only the case of n ≥ 3 in the following,
that is,

u(x) ≥ C(|x|2−n
− 1) ≥ 0 (3.6)

for |x| ∈ (1 − ε1, 1).
Sinceψ ∈ Ap(B1(0)), it is positive almost everywhere in B1(0), one can choose some τ2 ∈ (0, ε1) small enough, such that

ψ(1 − τ2) > 0 and

1 − (1 − t)n−2
= (n − 2)t −

(n − 2)(n − 3)
2

(−t)2 + · · · − (−t)n−2

≥
n − 2
2

t (3.7)

for all t ∈ (0, τ2).
Sinceu is the solution of (1.1) onKθ,ψ (B1(0)), itmust be the solution of (1.1) onKu(1−τ2),ψ (B1−τ2(0)), thenby Lemma1.1(a),

u(x) ≥ min u(∂B1−τ2(0)) = u(1 − τ2) ≥ ψ(1 − τ2) > 0 (3.8)

for all x ∈ B1(0)with |x| ≤ 1 − τ2.
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From (3.6), (3.8), we have that∫
Br (0)

u−
1

p−1 dx
p−1

=

∫
B1−τ2 (0)

u−
1

p−1 dx +

∫
B1(0)\B1−τ2 (0)

u−
1

p−1 dx

p−1

≤

∫
B1−τ2 (0)

ψ(1 − τ2)
−

1
p−1 dx +

∫
B1(0)\B1−τ2 (0)

u−
1

p−1 dx

p−1

≤


C +

∫
B1\B1−τ2 (0)

(|x|2−N
− 1)−

1
p−1 dx

p−1

. (3.9)

And from (3.7), we have that∫
B1\B1−τ2 (0)

(|x|2−N
− 1)−

1
p−1 dx ≤

∫
B1\B1−τ2 (0)

|x|
N−2
p−1 (1 − |x|N−2)

−
1

p−1 dx

≤ C(N)
∫ 1

1−τ2
r

N−2
p−1 +N−1

(1 − rN−2)
−

1
p−1 dr

≤ C
∫ 1

1−τ2
[1 − rN−2

]
−

1
p−1 dr

= C
∫ τ2

0
[1 − (1 − t)N−2

]
−

1
p−1 dt

≤ C(N, p)
∫ τ2

0
t−

1
p−1 dt

≤ C < ∞ (3.10)

for any p > 2.
Combining (3.5), (3.9) and (3.10), we have that for any ε1/4 ≤ r < 1 and any y ∈ B1(0) such that Br(y) ⊂ B1(0),

|Br(y)|−p
∫

Br (y)
udx

∫
Br (y)

u−
1

p−1 dx
p−1

≤ C < ∞. (3.11)

(ii) If 0 < r ≤ ε1/4, then for |y| ≤ 1 − ε1/2, we have

Br(y) ⊂ B1−ε1/4(0) ⊂⊂ B1(0).

By Lemma 3.2, it is done. And for |y| ≥ 1 − ε1/2, we have

‖u‖Ap(Br (y)) = ‖ψ‖Ap(Br (y)) ≤ [ψ]Ap(B1(0)) < ∞.

Case II: There exists and ε2 > 0, such that ψ < u for all |x| ∈ (1 − ε2, 1).
(i) If r ≥ ε2/4, by Lemma 1.1, u must be harmonic on B1 \ B1−ε2(0) and has the type of C(|x|2−n

− 1) for n ≥ 3 and
C(1 − |x|) for n = 2. Then following the calculus just as in (i) of Case I.

(ii) If 0 < r < ε2/4, just follow the calculus as in (ii) in Case I.
From the above, we finally have that

u ∈ Ap(B1(0)). �
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