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1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively, let C be a nonempty closed convex
subsetof H.Let S, T : C — C be two non-expansive mappings. We use Fix(T) to denote the set of fixed points of T. Now, we
concern the following problem of finding hierarchically a fixed point of a non-expansive mapping T with respect to another
mapping S, namely

Find X € Fix(T) such that (x — Sx,x — x) <0, Vx € Fix(T). (1.1)

Problem (1.1) is very important in the area of optimization and related fields, such as signal processing and image
reconstruction (see [1-4]). Some algorithms for solving hierarchical fixed point problem (1.1) have been considered in
the literature; see for example, [5-11] and the references therein. In many problems, it is needed to find a solution with
minimum norm. A typical example is the least-squares solution to the constrained linear inverse problem; please see [12].
Therefore, it is an interesting problem to find the minimum-norm solution X of (1.1). In this respect, very recently, Yao
et al. [11] introduced an implicit algorithm and an explicit algorithm. Motivated and inspired by the works in this field,
the purpose of this paper is dedicated to find the minimum norm solution of the following general hierarchical fixed point
problem

o0 o0
Find X € () Fix(T,) such that (X — SX, X —x) <0, Vx e[ |Fix(Ty), (1.2)
n=1

n=1
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where S : C — C is a non-expansive mapping and {T;};°, : C — C are an infinite family of non-expansive mappings. We
first introduce an explicit regularized algorithm for finding the minimum norm solution of (1.2). Consequently, we show
that the proposed algorithm has strong convergence under some mild assumptions.

2. Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H. Let P : C — H be a (possibly non-self) y -contraction,
where y € [0, 1); namely,
[Px — Pyl < ylix—yll forallx,yeC.
Recall that a mapping T : C — C is non-expansive if
ITx — Ty|| < |lx —y|| forallx,y e C.

The metric (or nearest point) projection from H onto C is the mapping proj- : H — C which assigns to each pointx € C the
unique point projcx € C satisfying the property

llx — projex|| = inf [|x — y|| = d(x, ©).
yeC

Note that proj. is non-expansive and monotone. Below we gather some basic facts that are needed in the argument of the
subsequent sections.

Lemma 2.1 ([13] Demiclosedness Principle for Non-expansive Mappings). Let C be a nonempty closed convex subset of a real
Hilbert space H and let T : C — C be a non-expansive mapping with Fix(T) # @. If {x,} is a sequence in C weakly converging to
x and if {(I — T)x,} converges strongly to y, then (I — T)x = y; in particular, if y = 0, then x € Fix(T).
Lemma 2.2. Givenx € Hand z € C.
(i) That z = projcx if and only if there holds the relation:

(x—z,y—2z) <0 forally eC.
(ii) There holds the relation

(projex — projcy, x — y) = ||projex — projey|®  forallx, y € H.

Let C be anonempty closed convex subset of areal Hilbert space H. Let {T;}?°; : C — C be infinite family of non-expansive
mappings and let {£;}{°; be real number sequences such that 0 < & < 1foreveryi € N.For any n € N, define a mapping
W, of C into itself as follows:

Un,nJrl =1,
Un,n = i‘-nTnUn,n+1 + (] - Sn)ly
Un,nfl = é:nflTnflun.n + (1 - ‘i:nfl)l,

Unk = &TiUn k1 + (1 = &,
Unjk—1 = &k—1Tp—1Un i + (1 — &1,

Uno = &DUns + (1= 8),
Wy =Up1 =&T1Upnz + (1 =&)L (2.1)
Such W, is called the W-mapping generated by {T;}7°, and {&;}°,.

We have the following crucial Lemma 2.3 concerning W,, which can be found in [14]. Now we only need the following
similar version in Hilbert spaces.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T;}7°, : C — C be non-expansive mappings
with ﬂ,j“;l Fix(T,) # 0. Let &1, &, ... be real numbers such that 0 < & < b < 1 for any i € N. Then we have the following
results:

(1) foreveryx € C and k € N, the limit lim,_, o, Uy kX exists;
(2) Fix(W) = (e Fix(Ty).



6828 Y. Yao, R. Chen / Nonlinear Analysis 74 (2011) 6826-6834

Lemma 2.4 (See [15]). Using Lemma 2.3, one can define a mapping W of C into itself as: Wx = lim,_, oo Wpx = limy—, o0 U, 1X,
forevery x € C.If {x,} is a bounded sequence in C, then we have

lim ||Wx, — W;x,|| = 0.
n—oo

Lemma 2.5 ([16]). Assume {a,} is a sequence of nonnegative real numbers such that
np1 < (1 = y)ay + Yy, n >0,
where {y,} is a sequence in (0, 1) and {8,} is a sequence in R such that

() Yoz v = 09
(i) imsup,_, o0 80 < 001 Y 02 |8n¥n] < 00

Then lim,,_, o a, = 0.
3. Main results
In this section, we will introduce an explicit algorithm for finding the minimum norm solution of hierarchical fixed point

problem (1.2). More precisely, we consider the following regularized algorithm

Xnt1 = oSy + (1 — an) Wyprojc[(1 — Bu)xp], n >0, (3.1)
where {«,,}, {8} are two real numbersin (0, 1), S : C — C is a non-expansive mapping and W,, : C — C is the W-mapping
defined by (2.1). Throughout, we use §2 to denote the set of solutions (1.2) and assume that £2 is nonempty.
Remark 3.1. We note that the well-known Mann algorithm x, 1 = ayx, + (1 — ) Tx, has only weak convergence; please
see [17-23] for the related works. This implies that the algorithm

Xnp1 = anSXp + (1 —a)Wyxy, n>0 (3.2)

has only weak convergence. In order to obtain strong convergence, some modifications are needed. We modify the algorithm
(3.2) by adding the factor 1 — B, (where 8, — 0). However, we note that (1 — 8,)x, may not be in C. Hence, the projection
projc is used in order to guarantee that the sequence {x,} is well-defined.

Next, we will show the strong convergence of the algorithm (3.1). As a matter of fact, we introduce a general algorithm
which includes the algorithm (3.1) as a special case.
Algorithm 3.2. For any given x, € C, define the sequence {x,} iteratively by

Xnt1 = pSxp + (1 — o) Wyprojc[BnPx, + (1 — Bp)xn], n >0, (3.3)
where P : C — H is a y-contraction.
It is clear if we take P = 0, then (3.3) reduces to (3.1). For the strong convergence of the algorithms (3.1) and (3.3), we have

the following theorem.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let S : C — C be a non-expansive
mapping and W,, : C — C be the W-mapping defined by (2.1). Let P : C — H be a y-contraction with y € [0, 1). Suppose
£2 # () and the following conditions are satisfied

(C1) limy o0 @ = limy o0 22 = limy o 5- (i - 1) = limyoo 220t — Jim,,_ o LT & = 0;
(C2) Y2y Bn = 0.

Let the sequence {x,} be defined by (3.3). Then, we have

(1) hmn—>oo ||Xn+01n_xn“ — O,

(ii) every weak cluster point of {x,} solves the following variational inequality

xe 2, (I—-P)x,x—Xx)>0, Vxe 2. (3.4)
Further, if we add the following additional assumptions

2
(al) 11mn—>oo ;% =0
(a2) There exists some constant k > 0 such that |x — Wyx|| > kDist(x, (-, Fix(T,)), where Dist(x, (.-, Fix(Tp)) =
infyeree pivry X — VIl
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Then the sequence {x,} generated by (3.3) converges strongly to X € ﬂfii 1 Fix(T,,) which solves variational inequality (3.4). In
particular, if we take P = 0, then the sequence {x,} generated by (3.1) converges strongly to x € ﬂ;’il Fix(T,) which is the
minimum norm solution of hierarchical fixed point problem (1.2).

Remark 3.4. We can choose the following parameters satisfying conditions (C1), (C2) and (a1), for instance,

1 1 1

bn=-, n>1

an=m, 'anrﬂj’ )

We have the following important remark (see [6]).

Remark 3.5. (1) The hypothesis (a2) was used in [24] by Senter and Dotson so as to obtain a strong convergence result for
Mann iterates. Later Maiti and Ghosh [25], Tan and Xu [26] studied the approximation of fixed-points of a non-expansive
mapping T by Ishikawa iterates under the condition introduced in [16] and pointed out that this assumption is weaker
than the requirement that the mapping T is demi-compact.

(2) Since any weak-cluster point of {x,} is in ﬂ;’; Fix(T,) (see the detailed proof below), we would like to emphasize that

it is enough to assume that (a2) holds true in a neighborhood of ﬂfj‘i 1 Fix(Ty).
(3) We would also like to note that, thanks to a result by Lemaire [27], (a2) is in the convex minimization setting equivalent
to
Vx € H, @(x) —ming > kDist(x, arg min ¢)'/?

which is exactly one of the assumptions used in [28] to obtain convergence results (Propositions 3.4 and 4.3) of a
proximal method for hierarchical minimization problems. In [28], the convergence results are valid only in the finite
dimensional case.

Now we divide our detailed proof into several conclusions. Next, we assume that all conditions of Theorem 3.3 are satisfied.
Conclusion 3.6. (a) limy— o [|Xpr1 — Xn|l = 0;
(b) limp, o [l — Wy || = 0.
Proof. Setting y, = B,Px, + (1 — B,)x, for all n > 0. It follows that
Yn —Yn—1 = BuPXa + (1 — B)Xn — Bn—1Pxn—1 — (1 — Bu_1)Xn—1
= Bn(Pxn — PXq_1) + (Bn — Bn—1)Pxp—1 + (1 — Bu) (Xn — Xn—1) + (Bn—1 — Bn)Xn—1.
It follows that
IYn = Yn-1ll < v Ballxn — xXn—1ll + (1 = Bu) X0 — Xn—1ll + [Bn — Bn—1|UIPXn—11l + [IXa—111)
= [1—= (1 = y)Ballixn — X0—1ll + B0 — Ba—1l(IPxa—11l + lIXn—11)- (3.5)
From (3.3), we have
Xnt1 — Xn = 0pSXp + (1 — @) Wnproje[yal — on—1Sxn—1 — (1 — ctn—1)Wn_1projc [Vn—1]
= an(SXn — Sxn—1) + (1 — o) (Wyprojc[yn]l — Wiproje[yn—-11)
+ (- an)(Wanch’nq] - Wn71projc[ynf1]) + (otn — ap—1)Sxn—1 + (otn—1 — o) Wn_1projc[yn—1l.
Then, we obtain
X041 — Xall < onlISXq — Sxp—1ll + (1 — ) [Wiproje [yl — Waproje[yn—11ll
+ (1 — ap) [Waprojc[yn—11 — Wh—1projc[yn—11ll + lon — an—1|([1SXn—11l + [|Wh—1projc[yn-111D
< anllXy — X1l + (1 = @) lyn — Y1l + (1 — an) [Wyproje[yn—1] — Wa_1projc [ya—1lll
+ lon — a1 [(I1SXn—11l + [IWp—1projc[yn-111D- (3.6)
From (2.1), since T; and U, ; are non-expansive, we have
IWhprojc[yn—1] — Wa_1projc[yn—1]ll = 11T1Un2pr0jc[Yn—1] — &1T1Un—1,2P10jc [Yn-1]ll
&1 Un 2pr0jc[Yn—1] — Un—1,2P70jc [Yn—1]|l
= &11162T2Un 3p10jc [Yn—1] — &T2Un—1,3p10jc [Yu—1]ll
%'1%'2 ||Un,3pr0jc[yn71] - Un71.3pr0jc[yn71]”

IA

INIAIA

%'152 o 'Snfl ||Un,,1projc[yn,1] - Unq,nPTOJ'c[an]H

n—1
M Té (3.7)
i=1
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where M is some constant such that
sup { |Unnprojc[yn—11 = Un—1.0D70jc Yn11ll, X0 = Xaall, (ISXn—1 ]l + Wa—aprojelya—11ID, (IPxa—all + l1xa—11D }
n§ M.
Substituting (3.5) and (3.7) into (3.6), we get

n—1

”Xn-H - xn” < Oln”Xn _Xn—1|| + (1 - Oln)[‘1 - (1 - V)ﬂn]”xn _xn—1|| +M HE]
i=1

+1Bn — Ba—1l(IPxn—1ll + IXn—111) + letn — tn—1|([|SXn—1[| + [|Wn—1projc[yn-11ID)
= [1 - (1 - V),Bn(l - C‘fn)]”Xn - anll + |/3n - ﬂn71|(||Pxn71” + ||Xn71 ”)

n—1
+M &+ len — ctn 1| (ISl + Wi 1projcLya11ID.-
i=1
Therefore,
X1 — Xnll %0 = Xn—1ll 1Bn — Buil
ST < 1= (1= )81 — ) P P (P |+ [xaa )
o™ (o7] Un

M. o —anl .
- [T&+ = ISl + [ Waaprojelynll)
n =1

n

=Xl M
= 1= (= ) — e =l M T e (= a1 — ]
On—1 On i=1
% <||Xn — Xp—1 ” _ ”Xn — Xn—1 “) + |:8n - /3n71| (”Panl” + ”Xn—l”)
Oy Op_1 n

|ty — atp—1] .
= (ISl [ Wa-1projelyn-a11)
n
1% — Xnl
< [1=(1-p)B(1 —ap]——"10

n—1

1 1 oy — — Bu 1=
+ S +|n n1|+|ﬂn lgn 1|+71—[Ei M
Qn Qn—1 Qn Qp ®n 7
X0 — Xn—1l] M
=[1-A-py)B(1l—a)]l——+ A=)l —tp) —————
On—1 (1=y)A—a)
111 1 o — Oy — B 1Y
| == + | n n 1| + |,3n ,Bn 1| + 1—[& ) (3.8)
Bn | an On—1 o Bn anBn o Bn i1
From (C1), we note that lim,_, o ﬁ (%) = 0 which implies that
lim &%=t _ g, (3.9)

n—00 O‘nlgn

Thus, from (C1) and (3.9), we have
1 _ 3 _ B 1 n—1
. ( Lo =l 1B = Bl si) o
n—o00 ,311

+
Hence, applying Lemma 2.5 to (3.8), we immediately conclude that

1 1

On Qn—1

anBn anBn anBn i1

. ”Xn—H - xn”
lim — =

n— 00 [

0.

This implies that

lim ||x,1 — x|l = O. (3.10)
n—oo
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From (3.3) and (3.10), we have
lim ||x, — Wnprojc[yalll = 0.
n—oo
By (3.3), we get

Iprojc(ynl — Xnll = llprojclys] — projc[xalll
= ”yn - Xn”
= || Bn(Pxn — Xa)|| — O.

Notice that

1% — Wxnll < l1X0 — Waproje[ynlll + Waprojc[yal — Waxall + [Waxn — Wiy ||
< llxn — Waprojc[yalll + projclyn] — Xall + [[WnXy — Wiy ||
By (3.11)-(3.13) and Lemma 2.4, we deduce

lim ||x, — Wx,|| =0. O
n—oo

Conclusion 3.7. w,,(x,) C Fix(W) = (o, Fix(T,) and w,, (xy) C £2.

6831

(3.11)

(3.12)

(3.13)

(3.14)

Proof. Since the sequence {x,} is bounded, there exists a subsequence {x,;} of {x,} which converges weakly to some X € H.
Therefore, X € Fix(W) = ﬂ,fi] Fix(T,) by (3.14) and Lemma 2.1 (demi-closed principle). Hence, w,,(x,) C Fix(W) =

o2, Fix(T,). Next, we show that w,, (x,) C £2.
Rewriting (3.3) as

Xnp1 — Xn = @n(SXn — Xn) + (1 — oty) (Wiproje[yn] — projc[ynD) + (1 — o) (Projelyn] — yn) + (1 — ) On — Xn),

that is

I (1 Sy = Wayproilval + 20— projoya + P 0 py,
Setz, = % foralln > 1, that s,

2= (1 — )%+ 21— Woprojelyal + -~ (1 — projorya + L7 1 px,.

Pickupu € ﬂﬁil Fix(T,). Then, we have

(zn, Xn —u) = (I = S)xy — (I = SHHu, xp — u) + (U = SHu, X, — u)

1 - Un . .

+— I (1 = Wa)projclya] — (I — Wy, projclys] — u)
1-— Oy . . 1— Qn . .

+ " (I — Wy)proje[ynl, xa — projclyal) + ” (I — projc)yn, Xn — projc[ynl)
1—a, . . Bn(1 — apn)

+ (U — projc)yn, projclyn] — u) + T((I — P)xy, xp — u).

Using monotonicity of | — W, and I — S, we derive that

(I — Wp)projclyn] — I — Wp)u, projcly,] —u) >0 and (I —S)x, — (I —S)u,x, —u) > 0.
Using the property of the projection (Lemma 2.2), we have

((I = projc)yn, projc[ya] —u) = 0.
At the same time, we observe that

Yn — Waprojelynl = BnPxn + (1 — Bu)xn — Wyprojclys]

= ,Bn(PXn - XrH—]) + (1 - ,Bn)(xn - Xn+1) + Xn+1 — Wnprojc[yn]
= ,Bn(PXn - Xn+1) + (1 - ,Bn)(xn - Xn+1) + Otn(SXn - Wnprojc[yn])-
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Therefore,
1—ay . .
(Zns %o — ) = (1 = S)U, Xg — ) + —2 (I = Wi)ProjeLynl, o — projclya])
1— o, X , Bn(1 —atn)
+ (d — projc)yn, Xn — projc[ynl) + T(U — P)x;, xp — u)

/Sn(1 —ay) 1—op . .

= (U —=Su,xp —u) + ——— (U — P)xp, Xy — u) + Yn — Waprojc[ynl, Xa — projc[yal)

= (=9~ + P gy TP projeiya

Xn — Xn41

+ (1= oap)(1 = By) < s Xn — pmjc[yn]> + (1 — o) (Sxq — Waprojc[yal, Xa — projc[yal).

n

But, sincez, — 0, &2 — 0, % — 0and x, — projc[y,] — 0, we obtain from the above inequality that

An

limsup((I —S)u,x, —u) <0, ue ﬂFix(Tn).

n—oo n=1

Therefore,
o0
lim sup((I — S)u,xnj —u) <0, ue mFix(Tn).
Jj—o0o n=1

Since Xn, — X, we have

limsup((I — S)u, xp, —u) = (U — Su, x — u).

j—oo

This implies that every weak cluster point x € ﬂﬁ; Fix(T,) of the sequence {x,} solves the variational inequality

(I=S)u,x—u) <0, ue ﬂFix(Tn),

n=1

which is equivalent to its dual variational inequality (see [10])

(I =9%%—u) <0, ue( )Fix(T,).

n=1

This suffices to guarantee that w,, (x,) C 2. O

Conclusion 3.8. lim sup,,_, ., (PX — X, y, — X) < 0and limsup,_, », ‘;—Z (SX — X, Xpe1 — X) < 0.

Proof. Note that P is a contraction. Then the solution set of the variational inequality (3.4) is a singleton. Let X be the unique
solution of the variational inequality (3.4). Now take a subsequence {x,} of {x,} satisfying

limsup((I — P)X, x, — X) = lim (I — P)X, X, — X).
n— 00 =00

Without loss of generality, we may further assume that x,, — X, then x € £2. Therefore, noting that x is the solution of the
variational inequality (3.4), we get

limsup((I — P)X, x, —X) = (I — P)X,x — X) > 0.

n—oo

We note that every weak cluster point of {x,} is in £2. Since y, — x,, — 0, then every weak cluster point of {y,} is also in £2.
Consequently, since X = proj, (Px), we easily deduce that

lim sup(Px — X, y, —X) < 0.
n—oo

On the other hand, we note that

SX — X, Xpp1 — X) = (SX — X, proj oo Xnt1 — X) + (SX — X, X1 — PrOj o X
( n+1 ) ( p ]ﬂFix(Tn) n+1 ) ( n+1 p Jm Fix(Ty) n

n=1 n=1

+1)-
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Since projr  pixr,)Xn+1 € (M=, Fix(T,), by (1.2) we have
SX — X, j oo —X) <0,
(Sx — X pm]ﬂ Fix(Tn)Xn+1 X) <

n=1

and therefore,

SX — X, Xpr1 — X) < (SX — X, Xp41 — DIOj X,
( nt1 — X) < ( n+1 — D ]FCW (T n+1)
n=1
< NSx =X IXng1 —Proj oo Xpyall
() Fix(Tn)
n=1
o0
= [IS% — || x Dist ( xny1, [ ) Fix(Ty)
n=1

1 . .
= E”SX = Xl X041 — WiXniall.

We note that
X041 — WXl < X1 — Waproje[yalll + IWaproje[yn] — Wil + [Wixn — Wikl
< anlISxn — Waprojc[yalll + lyn — Xnll + %01 — Xa |l
< anl|Sxn — Waprojc[yalll + BnllPxn — Xall + lXn+1 — Xnll.

Hence, we have
2

on . o ) on af lXnpr —Xall o o
(SR — R Xn1 — R) < - [|SX — XI| |Sxn — Waprojclynlll + —“1IS% — X|| [ Pxy — xal + 2 ———"2 |5k — R
. kBn k kB op
It follows that
o ~ ~ ~
limsup — (SX — &, Xpp1 —X) < 0. O
n—oo n
By Conclusions 3.6-3.8, we finally prove Theorem 3.3.
Proof. From (3.3), we have
Xn+1 — X = on(Sx, — SX) + (1 — o) (Wiproje[yal — X) + o (SX — X).
Thus, we have
1Xn41 — 2”2 < llotn(Sxpn — SX) + (1 — o) (Wiproje[yal — ;‘)”2 + 20, (SX — X, Xn+1 — X)
< aul|Sx;, — S;(”2 + (1 — ap) [|Wyprojc[ya] — ;(”2 + 2“n<5)~< —X, Xn+1 — )~<>
< anllxn — XI> + (1 — an)lyn — X1 + 200 (SX — X, X1 — X). (3.15)

At the same time, we observe that

Iyn — XlI> = 11 = Bu) (%0 — &) + Ba(Pxa — PX) + Ba(PX — )|
< (1 = Bw)Xn — X) + Bu(Pxn — PX)||* + 2B, (PX — X, yn — &)
< (1= B llxn _’~<||2 + BallPxn — P)?”z +2,3n(P’~< —X,Yn —X)
< (1= B)llxn _’~<||2 + ﬁnyznxn - 52”2 + 2ﬁn<P52 —X,yn —X)

=[1—= (1= y>Bullxn — XlI* + 2B (PX — &,y — X). (3.16)
Substituting (3.16) into (3.15), we have
%01 = XI* < anllxa — &I? 4+ (1 — an)[1 = (1= ¥*)Balllxn — X|I?
+2B0(1 — aty) (PX — &, yn — X) + 200 (SX — X, Xn1 — X)
=[1— 1= y*)Ba(1 — an)]llxn — X[I* + 2Bn(1 — @) (PX — &, Yo — &) + 20, (SX — X, Xp1 — &)
=[1— (1= p?)Bu(1 —a)]llxn —X|I> + (1 = ¥*)Ba(1 — atp)
2 .. - 2 oy
* {1—y2<PX_x’y”_x>+ (1= 7)1 —an) B

Therefore, we can apply Lemma 2.5 to (3.17) to conclude that x, — x. This completes the proof. O

(S% — %, Xni1 —;2)}. (3.17)
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