Solitary waves for the Klein-Gordon-Maxwell system with critical exponent ${ }^{\text {a }}$

Feizhi Wang

School of Mathematics and Informational Science, Yantai University, Yantai 264005, Shandong, PR China

A R TICLE INFO

Article history:

Received 7 May 2010
Accepted 17 September 2010

Keywords:

Klein-Gordon-Maxwell system
Solitary waves
Critical growth
Pohožaev identity

Abstract

In this paper we study the existence of solutions for nonlinear Klein-Gordon-Maxwell equations coupled with Maxwell's equations when the nonlinearity exhibits critical growth. We improve some previous existence results in Azzollini et al. (2009) [5], Carrião et al. (2009) [4] and Cassani (2004) [3].

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, as a follow-up to [1], a certain number of works have been devoted to the Klein-Gordon-Maxwell system

$$
\begin{cases}-\Delta u+\left[m^{2}-(e \phi-\omega)^{2}\right] u=f(u), & \text { in } \mathbb{R}^{3} \tag{Pf}\\ \Delta \phi=e(e \phi-\omega) u^{2}, & \text { in } \mathbb{R}^{3},\end{cases}
$$

where m, e and ω are real constants. Problem (Pf) concerns certain kinds of solitary charged waves in nonlinear equations of Klein-Gordon or Schrödinger type.

In the following, we review some assumptions on problem (Pf), and the corresponding results. In [2], under the conditions
$\left(\mathrm{DM}_{1}\right) f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and
$\left(\mathrm{DM}_{2}\right)$ for every $s \in \mathbb{R}$, either $f(s) s+2\left(m^{2}-\omega^{2}\right) s^{2} \geq 6 F(s)$ or $2 F(s) \geq f(s) s$,
D'Aprile and Mugnai proved that any weak solution $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$ of (Pf) vanishes identically. In particular, $f(u)=|u|^{2^{*}-2} u$ and $m>\omega$ satisfy $\left(\mathrm{DM}_{1}\right)$ and $\left(\mathrm{DM}_{2}\right)$. Notice that the critical Sobolev exponent $2^{*}=6$ in dimension three. In [3], Cassani considered problem (Pf) with $f(u)=\mu|u|^{q-2} u+|u|^{2^{*}-2} u$ (adding a lower-order perturbation), where $\mu>0$ and $q \in[4,6)$. He showed the existence of nontrivial solutions of (Pf), provided one of the following conditions is satisfied:
(i) $q \in(4,6),|m|>|\omega|>0$ and $\mu>0$,
(ii) $q=4,|m|>|\omega|>0$ and $\mu>0$ sufficiently large.

Later, Carrião et al. [4] improved the result of Cassani [3]. They assume that one of the following conditions is satisfied:
(i) $q \in(4,6),|m|>|\omega|>0$ and $\mu>0$,
(ii) $q=4,|m|>|\omega|>0$ and $\mu>0$ sufficiently large.
(iii) $q \in(2,4),|m| \sqrt{q-2}>|\omega| \sqrt{2}>0$ and $\mu>0$ sufficiently large.

[^0]0362-546X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2010.09.033

[^0]: * Supported by Shandong Province Natural Science Foundation (2009ZRB01795).

 E-mail address: wangfz@ytu.edu.cn.

