Contents lists available at ScienceDirect

ELSEVIER

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Periodic solutions of delay impulsive differential equations*

Jin Liang^{a,*}, James H. Liu^b, Ti-Jun Xiao^c

^a Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China

^b Department of Mathematics, James Madison University, Harrisonburg, VA 22807, USA

^c Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, PR China

ARTICLE INFO

Article history: Received 8 February 2011 Accepted 7 July 2011 Communicated by Ravi Agarwal

Keywords: Impulsive differential equation Periodic solution Fixed point

ABSTRACT

We study the following semilinear impulsive differential equation with delay:

 $u'(t) + Au(t) = f(t, u(t), u_t), \quad t > 0, \ t \neq t_i,$ $u(s) = \phi(s), \quad s \in [-r, 0],$ $\Delta u(t_i) = I_i(u(t_i)), \quad i = 1, 2, \dots, \ 0 < t_1 < t_2 < \dots < \infty,$

in a Banach space $(X, \|\cdot\|)$ with an unbounded operator A, where r > 0 is a constant and $u_t(s) = u(t + s), s \in [-r, 0]$. Here, $\Delta u(t_i) = u(t_i^+) - u(t_i^-)$ constitutes an impulsive condition, which can be used to model more physical phenomena than the traditional initial value problems. We assume that f(t, u, w) is T-periodic in t and then prove with some compactness conditions that if solutions of the equation are ultimately bounded, then the differential equation has a T-periodic solution. The new results obtained here extend some results in this area for differential equations without impulsive conditions or without delays.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $(X, \|\cdot\|)$ be a Banach space and let *A* be an unbounded operator. A study of periodic solutions for the following finite delay differential equation:

$$u'(t) + Au(t) = f(t, u(t), u_t), \quad t > 0,$$

$$u(s) = \phi(s), \quad s \in [-r, 0],$$

was given in [1] using the boundedness of the solutions; see [2–6] for some related references. Recently, a study of periodic solutions for the following impulsive differential equation:

$$u'(t) + Au(t) = f(t, u(t)), \quad t > 0, \ t \neq t_i,$$

$$u(0) = u_0,$$

$$\Delta u(t_i) = I_i(u(t_i)), \quad i = 1, 2, \dots, \ 0 < t_1 < t_2 < \dots < \infty,$$

was given in [7] using the boundedness of the solutions, where $\Delta u(t_i) = u(t_i^+) - u(t_i^-)$ constitutes an impulsive condition. Note that impulsive conditions are combinations of the traditional initial value problems and the short-term perturbations

* Corresponding author. Tel.: +86 21 54743147; fax: +86 21 54743147.

^{*} This work was supported partly by the NSF of China (11071042) and the Research Fund for Shanghai Key Laboratory for Contemporary Applied Mathematics (08DZ2271900).

E-mail addresses: jinliang@sjtu.edu.cn (J. Liang), liujh@jmu.edu (J.H. Liu), tjxiao@fudan.edu.cn (T.-J. Xiao).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.07.008