Nagumo type existence results of Sturm-Liouville BVP for impulsive differential equations ${ }^{\star \pi}$

Ruixi Liang*, Zaiming Liu
School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410075, China

A R T I C L E INFO

Article history:

Received 13 April 2011
Accepted 28 June 2011
Communicated by Enzo Mitidieri

MSC:

34B15
34B37

Keywords:

Impulse
Upper and lower solutions
Boundary value problem
Nagumo condition

Abstract

In this paper, the method of upper and lower solutions and the Schauder degree theory are employed in the study of Sturm-Liouville boundary value problems for second order impulsive differential equations. We obtain the existence of at least three solutions to the problem under the assumption that the nonlinear term f satisfies a Nagumo condition with respect to the first order derivative.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Impulsive differential equations serve as basic models to study the dynamics of processes which are subject to sudden changes in their states. Recent development in this field has been motivated by many applied problems, such as population dynamics [1], medicine [2-4] and control theory [5,6]. For the general aspects of impulsive differential equations, we refer the reader to the classical monographs [7-9]. In recent years, boundary value problem (BVP) of nonlinear impulsive differential equations have received a considerable attention; see $[10-20,9,21,22]$ and the references therein. The purpose of the present paper is to investigate the existence of solutions for the following Sturm-Liouville boundary value problem impulse effect

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)=f\left(t, u(t), u^{\prime}(t)\right), \quad t \in J, t \neq t_{k} \\
u\left(t_{k}^{+}\right)=P_{k}\left(u\left(t_{k}\right)\right), \quad k=1,2, \ldots, m, \tag{1.1}\\
u^{\prime}\left(t_{k}^{+}\right)=Q_{k}\left(u^{\prime}\left(t_{k}\right)\right), \quad k=1,2, \ldots, m \\
a u(0)-b u^{\prime}(0)=0, \quad c u(1)+d u^{\prime}(1)=0
\end{array}\right.
$$

where $a>0, b \geq 0, c>0, d \geq 0, \rho=a c+a d+b c>0.0=t_{0}<t_{1}<t_{2}<\cdots<t_{m}<t_{m+1}=1 . J=[0,1], J_{0}=\left[0, t_{1}\right]$ and $J_{k}=\left(t_{k}, t_{k+1}\right](k=1,2, \ldots, m) . f \in C\left(J \times R^{2}, R\right), P_{k}, Q_{k}: R \rightarrow R$ are continuous. $u^{\prime}\left(t_{k}^{+}\right), u\left(t_{k}^{+}\right)\left(u^{\prime}\left(t_{k}\right)\right.$, $\left.u\left(t_{k}\right)\right)$ denote the right limit (left limit) of $u^{\prime}(t)$ and $u(t)$ at $t=t_{k}$, respectively.

In [23], Erbe and Wang considered the following boundary value problems

$$
\begin{cases}u^{\prime \prime}(t)+a(t) f(u)=0, & 0<t<1 \tag{1.2}\\ a u(0)-b u^{\prime}(0)=0, & c u(1)+d u^{\prime}(1)=0\end{cases}
$$

[^0]
[^0]: * Supported by the National Natural Science Foundation of China (No. 11001274) and the Postdoctoral Science Foundation of Central South University.
 * Corresponding author. Tel.: +86 073182655127.

 E-mail address: liangruixi123@yahoo.com.cn (R. Liang).

