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a b s t r a c t

In this paper, the method of upper and lower solutions and the Schauder degree theory
are employed in the study of Sturm–Liouville boundary value problems for second order
impulsive differential equations. We obtain the existence of at least three solutions to the
problemunder the assumption that the nonlinear term f satisfies a Nagumo conditionwith
respect to the first order derivative.
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1. Introduction

Impulsive differential equations serve as basic models to study the dynamics of processes which are subject to sudden
changes in their states. Recent development in this field has been motivated by many applied problems, such as population
dynamics [1], medicine [2–4] and control theory [5,6]. For the general aspects of impulsive differential equations, we
refer the reader to the classical monographs [7–9]. In recent years, boundary value problem (BVP) of nonlinear impulsive
differential equations have received a considerable attention; see [10–20,9,21,22] and the references therein. The purpose
of the present paper is to investigate the existence of solutions for the following Sturm–Liouville boundary value problem
impulse effect

−u′′(t) = f (t, u(t), u′(t)), t ∈ J, t ≠ tk,
u(t+k ) = Pk(u(tk)), k = 1, 2, . . . ,m,

u′(t+k ) = Qk(u′(tk)), k = 1, 2, . . . ,m,
au(0) − bu′(0) = 0, cu(1) + du′(1) = 0;

(1.1)

where a > 0, b ≥ 0, c > 0, d ≥ 0, ρ = ac + ad + bc > 0. 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1. J = [0, 1], J0 = [0, t1]
and Jk = (tk, tk+1] (k = 1, 2, . . . ,m). f ∈ C(J × R2, R), Pk,Qk : R → R are continuous. u′(t+k ), u(t+k )(u′(tk), u(tk)) denote
the right limit (left limit) of u′(t) and u(t) at t = tk, respectively.

In [23], Erbe and Wang considered the following boundary value problems
u′′(t) + a(t)f (u) = 0, 0 < t < 1,
au(0) − bu′(0) = 0, cu(1) + du′(1) = 0, (1.2)
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