Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

H^2 -boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains

Julia García-Luengo, Pedro Marín-Rubio, José Real*

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

ARTICLE INFO

Article history: Received 1 July 2010 Accepted 27 April 2011 Communicated by Ravi Agarwal

MSC: 35B41 35B65 35030

Keywords: 2D Navier-Stokes equations Pullback attractors Invariant sets H²-regularity

ABSTRACT

We prove some regularity results for the pullback attractors of a non-autonomous 2D Navier–Stokes model in a bounded domain Ω of \mathbb{R}^2 . We establish a general result about $(H^2(\Omega))^2 \cap V$ -boundedness of invariant sets for the associate evolution process. Then, as a consequence, we deduce that, under adequate assumptions, the pullback attractors of the non-autonomous 2D Navier-Stokes equations are bounded not only in V but also in $(H^2(\Omega))^2$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and setting of the problem

Let us consider the following problem for a non-autonomous 2D Navier–Stokes system:

$$\begin{cases} \frac{\partial u}{\partial t} - v \bigtriangleup u + (u \cdot \nabla)u + \nabla p = f(t) & \text{in } \Omega \times (\tau, +\infty) ,\\ \nabla \cdot u = 0 & \text{in } \Omega \times (\tau, +\infty) ,\\ u = 0 & \text{on } \partial \Omega \times (\tau, +\infty) ,\\ u(x, \tau) = u_{\tau}(x), \quad x \in \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^2$ is a bounded open set, with a regular boundary $\partial \Omega$, the number $\nu > 0$ is the kinematic viscosity, *u* is the velocity field of the fluid, p is the pressure, $\tau \in \mathbb{R}$ is a given initial time, u_{τ} is the initial velocity field, and f(t) is a given external force field.

To set our problem in the abstract framework, we consider the following usual abstract spaces (see [1-4]):

$$\mathcal{V} = \{ u \in (C_0^\infty(\Omega))^2 : \operatorname{div} u = 0 \},\$$

H = the closure of \mathcal{V} in $(L^2(\Omega))^2$ with inner product (\cdot, \cdot) and associate norm $|\cdot|$, where for $u, v \in (L^2(\Omega))^2$,

$$(u, v) = \sum_{j=1}^{2} \int_{\Omega} u_j(x) v_j(x) \mathrm{d}x,$$

Corresponding author.

(1)

E-mail addresses: luengo@us.es (J. García-Luengo), pmr@us.es (P. Marín-Rubio), jreal@us.es (J. Real).

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.063