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a b s t r a c t

We study the nonlinear boundary value problem consisting of the equation −y′′
=∑m

i=1 wi(t)fi(y) and a boundary condition involving a Riemann–Stieltjes integral. By
relating it to the eigenvalues of the corresponding linear Sturm–Liouville problem with
a two-point separated boundary condition, we obtain results on the existence and nonex-
istence of nodal solutions of this problem. The shootingmethod and an energy function are
used to prove the main results.
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1. Introduction

We are concerned with the boundary value problem (BVP) consisting of the equation

− y′′
=

m−
i=1

wi(t)fi(y), t ∈ (a, b), (1.1)

and the boundary condition (BC)

cosα y(a) − sinα y′(a) = 0, α ∈ [0, π),

y(b) −

∫ b

a
y(s)dξ(s) = 0,

(1.2)

where m ≥ 1 is an integer, a, b ∈ R with a < b and the integral in BC (1.2) is the Riemann–Stieltjes integral with
respect to ξ(s) with ξ(s) a function of bounded variation. In the case where ξ(s) = s, the Riemann–Stieltjes integral in
the second condition of (1.2) reduces to the Riemann integral. In the case that ξ(s) =

∑d
j=1 kjχ(s − ηj), where d ≥ 1,

kj ∈ R, j = 1, . . . ,m, {ηj}
d
j=1 is a strictly increasing sequence of distinct points in (a, b), and χ(s) is the characteristic

function on [0, ∞), i.e.,

χ(s) =


1, s ≥ 0,
0, s < 0,
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