Positive solutions for a mixed and singular quasilinear problem

J.V.A. Gonçalves ${ }^{\text {a }}$, M.C. Rezende ${ }^{\text {b }}$, C.A. Santos ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Goias, Goiânia, 74001-970, Brazil
${ }^{\text {b }}$ Department of Mathematics, University of Brasília, Brasília, 70910-900, Brazil

ARTICLE INFO

Article history:

Received 6 May 2010
Accepted 9 August 2010

MSC:

35J25
35 J 20
35J67

Keywords:

p-Laplacian
Lower and upper solutions
Singular problems
Sub-linear and super-linear terms

A B S TRACT

We deal with the existence of solution for the nonlinear elliptic problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda f(x, u) \text { in } \Omega, \\
u>0 \quad \text { in } \Omega, \quad u(x)=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where Ω denotes a smooth bounded domain in $\mathbb{R}^{N}, \Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ with $1<p$ $<N$, is the p-Laplacian operator, $f: \Omega \times(0, \infty) \rightarrow[0, \infty)$ is a suitable function and $\lambda>0$ is a real parameter. The nonlinearity f is allowed to behave like either $f(x, s) \xrightarrow{s \rightarrow 0} \infty$ and/or $f(x, s) \xrightarrow{s \rightarrow \infty} \infty$ for each $x \in \Omega$.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We shall establish the results on the existence of solutions for the nonlinear elliptic problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda f(x, u) \quad \text { in } \Omega, \tag{1}\\
u>0 \quad \text { in } \Omega, \quad u(x)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where Ω denotes a smooth bounded domain in $\mathbb{R}^{N}, \Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), 1<p<N$, is the usual p-Laplacian operator, $f: \Omega \times(0, \infty) \rightarrow[0, \infty)$ is a continuous function and $\lambda>0$ is a real parameter.

The principal fact in this paper is that the nonlinearity f is allowed to behave like either $f(x, s) \xrightarrow{s \rightarrow 0} \infty$ or $f(x, s) \xrightarrow{s \rightarrow \infty} \infty$. That is, f can be either singular-super-linear at 0 or super-linear at infinity.

It is well known that such singular elliptic problems arise in contexts of chemical heterogeneous catalysts, nonNewtonian fluids and also the theory of heat conduction in electrically conducting materials; see [1-4] for a detailed discussion.

These kinds of problems have been studied extensively in the past years for separable nonlinearities $f(x, t)=b(x) g(t)$, where b and g are appropriate functions.

Lazer and McKenna in [5], motivated by pioneering work of Crandall et al. [6], study the problem

$$
\left\{\begin{array}{l}
-\Delta u=b(x) u^{-\gamma} \quad \text { in } \Omega \tag{2}\\
u(x)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

[^0]
[^0]: * Corresponding author. Tel.: +55 6132741406; fax: +55 6132732737.

 E-mail addresses: jvg@mat.ufg.br (J.V.A. Gonçalves), manuela@mat.unb.br (M.C. Rezende), csantos@unb.br, capdsantos@gmail.com (C.A. Santos).

