Time-periodic solutions of a nonlinear wave equation

Bui An Ton
Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada

A R T I CLE INFO

Article history:

Received 21 July 2009
Accepted 3 May 2011
Communicated by Enzo Mitidieri

MSC:

35L05
35L70
93B05

Keywords:

Time-periodic solution
3D nonlinear wave equation
Control

A B S TRACT

The existence of a time-periodic solution of an n-dimensional nonlinear wave equation is established with $n=2$ and 3 .
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the problem

$$
\begin{align*}
& w^{\prime \prime}-\Delta w+|w|^{p-2} w=f \quad \text { in } Q=\Omega \times(0, T) \tag{1.1}\\
& w=0 \quad \text { on } \partial \Omega \times(0, T),\left.\quad\left\{w, w^{\prime}\right\}\right|_{t=0}=\left.\left\{w, w^{\prime}\right\}\right|_{t=T} \quad \text { in } \Omega
\end{align*}
$$

where Ω is a bounded open subset of $R^{n}, n=2$, 3 , with a smooth boundary. The forcing term f is in a closed subset of N^{\perp} and

$$
N^{\perp}=\left\{g: \int_{0}^{T}(g, \varphi) \mathrm{d} t=0 \forall \varphi \in L^{2}(Q), \varphi(., 0)=\varphi(., T), \int_{0}^{T} \varphi \mathrm{~d} t=0\right\}
$$

The existence of a solution of (1.1) is established in Section 3 when $2 \leq p \leq 4$ and $\Omega \subset R^{3}$ and for planar domains with $2 \leq p<\infty$. For the linear wave equation we shall study time-periodic solutions of the linear wave equation with a forcing term dependent on the unknown.

Let $\{\alpha, \beta\}$ be in $\left\{H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right\} \times L^{2}(\Omega)$, and consider the initial boundary problem

$$
\begin{array}{ll}
w^{\prime \prime}-\Delta w+|w|^{p-2} w=f & \text { in } Q \\
w=0 \quad \text { on } \partial \Omega \times(0, T), & \left.\left\{w, w^{\prime}\right\}\right|_{t=0}=\{\alpha, \beta\} \quad \text { in } \Omega \tag{1.2}
\end{array}
$$

In Section 4, we study the optimization problem

$$
\begin{equation*}
A=\left\{\|\alpha-w(., T)\|_{H_{0}^{1}(\Omega)}+\left\|\beta-w^{\prime}(., T)\right\|: \forall\{\alpha, \beta, w\} \text { solution of }(1.2), \forall\{\alpha, \beta\} \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)\right\} \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: E-mail address: bui@math.ubc.ca.
 0362-546X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.na.2011.05.003

