Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Population models with diffusion, strong Allee effect, and nonlinear boundary conditions

Jerome Goddard II^a, Eun Kyoung Lee^b, R. Shivaji^{a,*}

^a Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA ^b Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

ARTICLE INFO

Article history: Received 3 February 2011 Accepted 1 June 2011 Communicated by Ravi Agarwal

Keywords: Diffusion Strong Allee effect Nonlinear boundary condition Constant yield harvesting

1. Introduction

ABSTRACT

We consider a population model with diffusion, a strong Allee effect per capita growth function, and constant yield harvesting. In particular, we focus our study on a population living in a patch, $\Omega \subseteq \mathbb{R}^n$ with $n \ge 1$, that satisfies a certain nonlinear boundary condition. We establish our existence results by the method of sub-supersolutions.

© 2011 Elsevier Ltd. All rights reserved.

In this paper, we consider a population dynamics model with strong Allee effect and nonlinear boundary conditions, namely

$$u_t = d\Delta u + a(x)u + b(x)u^2 - m(x)u^3 - ch(x); \quad \Omega$$
(1.1)

$$d\alpha(x, u)\frac{\partial u}{\partial n} + [1 - \alpha(x, u)]u = 0; \quad \partial\Omega$$
(1.2)

where Ω is a bounded domain in \mathbb{R}^n with $n \ge 1$, Δ is the Laplace operator, d is the diffusion coefficient, a, b, m are C^{μ} (Holder continuous) functions such that b(x), m(x) are strictly positive on $\overline{\Omega}$ with a(x) negative at least for some $x \in \Omega$ (strong Allee effect), $c \ge 0$ is the harvesting parameter, $h(x) : \overline{\Omega} \longrightarrow \mathbb{R}$ is a C^1 function, $\frac{\partial u}{\partial \eta}$ is the outward normal derivative, and $\alpha(x, u) : \overline{\Omega} \times \mathbb{R} \longrightarrow [0, 1]$ is a C^1 function nondecreasing in u. This type of reaction–diffusion equation has been employed to describe the spatiotemporal distributaries and abundance of organisms living in a patch, Ω . The typical representation of such equations is given by

$$u_t = d\Delta u + u\tilde{f}(x, u); \quad \Omega$$
(1.3)

where u(t, x) denotes the population density and $\tilde{f}(x, u)$ is the per capita growth rate affected by the heterogeneous environment. Skellam first studied such ecological models in his pioneering work, [1]. Previously, Kolomogoroff, Petrovsky, and Piscounoff analyzed similar models in [2]. The classic example is Fisher's equation with $\tilde{f}(x, u) = (1 - u)$, first studied by Skellam in [1]. Subsequently, reaction–diffusion models have helped describe spatiotemporal phenomena in other disciplines such as physics, chemistry, and biology (see [3–7]). The logistic growth rate, $\tilde{f}(x, u) = a(x) - b(x)u$, has

* Corresponding author. Tel.: +1 662 325 7142; fax: +1 662 325 0005.

E-mail addresses: jg440@msstate.edu (J. Goddard II), eunkyoung165@gmail.com (E.K. Lee), shivaji@ra.msstate.edu (R. Shivaji).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.06.001