# Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system ${ }^{\text {* }}$ 

Feizhi Wang<br>School of Mathematics and Informational Science, Yantai University, Yantai 264005, Shandong, PR China

## A R T I CLE INFO

## Article history:

Received 23 December 2010
Accepted 22 April 2011
Communicated by Ravi Agarwal

## Keywords:

Klein-Gordon-Maxwell system
Solitary waves
Electrostatic field
Nehari manifold

## A B S T R A C T

In this paper, we study the nonlinear Klein-Gordon equation coupled with the Maxwell equation in the electrostatic case:

$$
\begin{cases}-\Delta u+\left[m^{2}-(e \phi+\omega)^{2}\right] u=f(u), & \text { in } \mathbb{R}^{3}  \tag{P}\\ \Delta \phi=e(e \phi+\omega) u^{2}, & \text { in } \mathbb{R}^{3}\end{cases}
$$

where $m, e, \omega>0$. Benci and Fortunato (2002) [3] and D'Aprile and Mugnai (2004) [6], showed that, for any $u \in H^{1}\left(\mathbb{R}^{3}\right)$, the second equation of problem (P) has a unique solution $\phi_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$, the map $\Lambda: u \in H^{1}\left(\mathbb{R}^{3}\right) \mapsto \phi_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$ is continuously differentiable, and $\phi_{u} \in[-\omega / e, 0]$. Furthermore, we prove that

$$
\max \left\{-\frac{\omega}{e}-\phi_{u}, \phi_{u}\right\} \leq \psi_{u} \leq 0
$$

where $\psi_{u}=\Lambda^{\prime}(u)[u] / 2$. Then, we consider the ground-state solution of problem (P) with $f(u)=|u|^{p-2} u, 2<p<6$.
© 2011 Elsevier Ltd. All rights reserved.

## 1. Introduction

Recently, the existence of solutions for the following Klein-Gordon-Maxwell systems:

$$
\begin{cases}-\Delta u+\left[m^{2}-(e \phi+\omega)^{2}\right] u=f(u), & \text { in } \mathbb{R}^{3}  \tag{P}\\ \Delta \phi=e(e \phi+\omega) u^{2}, & \text { in } \mathbb{R}^{3}\end{cases}
$$

where $m, e, \omega \in \mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and $f(0)=0$, have been studied in several works (see [1-6] and the references therein). (P) may describe a standing wave of the nonlinear Klein-Gordon equation interacting with an electromagnetic field in the electrostatic case (for more details, see [3,6]).

Solutions of $(\mathrm{P})(u, \phi)$ will be sought in $H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$ as critical points of the following functional:

$$
\Psi(u, \phi)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x-\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathbb{R}^{3}}\left[m^{2}-(\omega+e \phi)^{2}\right] u^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} F(u) \mathrm{d} x,
$$

where $F(t)=\int_{0}^{t} f(s) \mathrm{d}$. It is easy to see that $\Psi \in C^{1}\left(H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right), \mathbb{R}\right)$ and $(u, \phi)=(0,0)$ is a trivial solution of (P). In order to find the critical points of $\Psi(u, \phi)$, two difficulties have to be overcome. The first difficulty is that $\Psi$ is strongly indefinite, i.e. it is unbounded both from below and from above on infinite-dimensional subspaces. The second difficulty is that the embedding of $H^{1}\left(\mathbb{R}^{3}\right)$ into $L^{q}\left(\mathbb{R}^{3}\right)$ for $2 \leq q \leq 2^{*}$ is not compact.

[^0]
[^0]:    th Supported by Shandong Province Natural Science Foundation (2009ZRB01795) and National Natural Science Foundation of China (Grant No. 10671169). E-mail address: wangfz@ytu.edu.cn.

