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ensures the smoothness of the solution.
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1. Introduction

We consider the magneto-micropolar fluid equations in R3:

deu+ - V)u— (u+x)Au—(b-V)b+V (p+b]*) = xV x @ =0,

0w — YAw —kVdivew +2xo+u- Vo — xV xu =0,

otb—vAb+ (u-V)b—(b-V)u =0, (1.1)
V-u=V-b=0,

u(x,0) = ug(x), (0, X) = wo(x), b(0, x) = by(x).

Here u = u(x, t) represents the velocity field, b = b(x, t) represents the magnetic field, w = w(x, t) represents the micro-
rotational velocity; p denotes the hydrodynamic pressure; ;& > 0 is the kinematic viscosity, x > 0 is the vortex viscosity,
k > 0and y > 0 are spin viscosities, 1/v (with v > 0) is the magnetic Reynolds; while ug, by, @g are the corresponding
initial data with div ug = div by = 0.

This system is of interest for various reasons. For example, it includes some well-known equations, say the Navier-Stokes
equations (w = b = 0) and the MHD equations (@ = 0). Moreover, it has similar scaling properties and energy estimates as
the Navier-Stokes and MHD equations. We believe that the regularity theory of system (1.1) can improve the understanding
of the Navier-Stokes and MHD equations.

System (1.1) was first proposed by Galdi and Rionero [1]. The existence of global-in-time weak solutions were then
established by Rojas-Medar and Boldrini [2], while the local strong solutions and global strong solutions for the small initial
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