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a b s t r a c t

In this paper, we introduce a condition on multivalued mappings which is a multivalued
version of condition (Cλ) defined by Garcia-Falset et al. (2011) [3]. It is shown here that
some of the classical fixed point theorems for multivalued nonexpansive mappings can be
extended to mappings satisfying this condition. Our results generalize the results in Lim
(1974), Lami Dozo (1973), Kirk and Massa (1990), Garcia-Falset et al. (2011), Dhompongsa
et al. (2009) and Abkar and Eslamian (2010) [4–6,3,7,8] and many others.
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1. Introduction

A mapping T on a subset E of a Banach space X is said to be a contraction if there exists a constant k ∈ [0, 1) such that

‖Tx − Ty‖ ≤ k‖x − y‖, for all x, y ∈ E. (1)

If (1) is valid when k = 1, then T is called nonexpansive. It is called quasinonexpansive if ‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ E and
for all y ∈ F(T ), where F(T ) is the set of fixed points of T .

In order to characterize the completeness of underlyingmetric spaces, Suzuki [1] introduced a weaker notion of contrac-
tions and proved the following theorem.

Theorem 1.1. Define a nonincreasing function θ from [0, 1) onto ( 1
2 , 1] by

θ(r) =

1 if 0 ≤ r ≤ (
√
5 − 1)/2,

(1 − r)r−2 if (
√
5 − 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2
≤ r < 1.

Then for a metric space (M, d), the following are equivalent:

(i) M is complete.
(ii) There exists r ∈ (0, 1) such that every mapping T on X satisfying the following has a fixed point:

• θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X .
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