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a b s t r a c t

This paper is devoted to the continuity of solution maps for perturbation semi-infinite
vector optimization problems without compact constraint sets. The sufficient conditions
for lower semicontinuity and upper semicontinuity of solution maps under functional
perturbations of both objective functions and constraint sets are established. Some
examples are given to analyze the assumptions in the main result.
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1. Introduction

Let T be a nonempty compact subset of a Hausdorff topological space. C[T , Rl
] denotes the set of all continuous vector

functions b : T → Rl with the norm defined as follows:

‖b‖ := max
t∈T

‖b(t)‖l, b ∈ C[T , Rl
],

where ‖ · ‖l denotes the Euclidean norm in the l-dimensional real space Rl.
Given a closed convex pointed cone Km ⊂ Rm with a nonempty interior, the partial order ≼Km (≺Km ) in Rm is defined as

y≼Km y′ (y≼Km y′) if and only if y′
− y ∈ Km (y′

− y ∈ int(Km), respectively) for y, y′
∈ Rm.

f : Rn
→ Rm is said to be a Km-convex vector function if

f (λx1 + (1 − λ)x2) ≼Km λf (x1) + (1 − λ)f (x2)

for all x1, x2 ∈ Rn and all λ ∈ [0, 1].
Let Bi := {x ∈ Rn

: ‖x‖n ≤ i}, i = 1, 2, . . .. Then {Bi}
∞

i=1 is the sequence of compact sets in Rn satisfying Bi ⊂ int Bi+1
and Rn

=


∞

i=1 Bi. COKm [Rn, Rm
] denotes the set of all continuous Km-convex vector functions f : Rn

→ Rm with the metric
defined as follows:

ϱ(f 1, f 2) =

∞−
i=1

1
2i

ϱi(f 1, f 2)
1 + ϱi(f 1, f 2)

, f 1, f 2 ∈ COKm [Rn, Rm
]
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