ELSEVIER

Contents lists available at ScienceDirect

## Nonlinear Analysis



journal homepage: www.elsevier.com/locate/na

# Blow-up of solutions for a nonlinear beam equation with fractional feedback

### Soraya Labidi<sup>a</sup>, Nasser-eddine Tatar<sup>b,\*</sup>

<sup>a</sup> Laboratoire de Mathématiques Appliquées, Université Badji Mokhtar, B. P. 12, Annaba 23000, Algeria <sup>b</sup> King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261, Saudi Arabia

#### ARTICLE INFO

Article history: Received 8 May 2010 Accepted 4 October 2010

MSC: 35L10 93B30

Keywords: Blow up Boundary feedback Fractional derivative Non-dissipative system Singular kernel

#### ABSTRACT

A nonlinear beam equation describing the transversal vibrations of a beam with boundary feedback is considered. The boundary feedback involves a fractional derivative. We discuss the asymptotic behavior of solutions. In fact, we prove that solutions blow up in finite time under certain assumptions on the nonlinearity.

© 2010 Elsevier Ltd. All rights reserved.

#### 1. Introduction and description of the model

In this paper we study the behavior of solutions to the following nonlinear beam equation with fractional damping at the boundary

$$\begin{cases} u_{tt} + \Delta^2 u + \Delta g(\Delta u) = 0, & x \in \Omega, t > 0 \\ u = \frac{\partial u}{\partial \nu} = 0, & x \in \Gamma_1, t > 0 \\ \Delta u = 0, & x \in \Gamma_0, t > 0 \\ \frac{\partial \Delta u}{\partial \nu} = \frac{c}{\Gamma(\beta)} \int_0^t (t - s)^{\beta - 1} u_t ds - au, & x \in \Gamma_0, t > 0 \\ u(x, 0) = u_0(x), & u_t(x, 0) = u_1(x), & x \in \Omega \end{cases}$$
(1)

where  $\Omega$  is a bounded domain in  $\mathbb{R}^n$  with smooth boundary  $\partial\Omega$ . The boundary is divided into  $\Gamma_0$  and  $\Gamma_1$  in such a way that  $\partial\Omega = \Gamma_0 \cup \Gamma_1$ ,  $\Gamma_0 \cap \Gamma_1 = \emptyset$  and  $\lambda_{n-1}(\Gamma_1) > 0$  where  $\lambda_{n-1}$  denotes the (n-1)-dimensional Lebesgue measure on the boundary  $\partial\Omega$ . The initial data  $u_0(x)$  and  $u_1(x)$  are given functions, g(s) is a given nonlinear function,  $\partial/\partial\nu$  denotes the outward normal derivative and  $\Gamma(.)$  is the usual Euler gamma function. The constants a and c are positive and the power  $\beta$  in the integral term is such that  $0 < \beta < 1$ .

This problem is known as the Euler–Bernoulli beam problem and describes the transversal vibrations of a beam. Here the control is a torque applied on a part of the boundary of the beam. The integral term in the boundary condition is a time fractional derivative of u of order  $1 - \beta$ . It represents a boundary feedback which helps reduce the effect of the reflected waves. In fact, it is a boundary damping. Therefore, it is important to have an idea of the sufficient conditions which make

\* Corresponding author. Tel.: +966 3 860 4654; fax: +966 3 860 2340.

E-mail addresses: labidis1@yahoo.fr (S. Labidi), tatarn@kfupm.edu.sa (N.-e. Tatar).

 $<sup>0362\</sup>text{-}546X/\$$  – see front matter C 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.012