Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Nondifferentiable multiobjective symmetric duality with *F*-convexity over cones

Himani Saini*, T.R. Gulati

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India

ARTICLE INFO

Article history: Received 23 February 2010 Accepted 18 October 2010

Keywords: Nondifferentiable multiobjective programming Symmetric duality Second-order K-F-convexity Cone constraints Weakly efficient solution Duality theorems

In the present p

ABSTRACT

In the present paper, a pair of Wolfe type nondifferentiable multiobjective second-order symmetric dual programs over arbitrary cones are formulated. Using the concept of weak efficiency with respect to a convex cone, weak, strong and converse duality theorems are studied under second-order *K*–*F*-convexity assumptions. Self-duality is also discussed. © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The duality in linear programming is symmetric, i.e., the dual of the dual is the primal problem. This is not the case in nonlinear programming in general. Dorn [1] introduced the concept of symmetric duality in quadratic programming. His results were extended to general nonlinear programs involving convex/concave functions by Dantzig et al. [2] and then by Bazaraa and Goode [3] over cone constraints. Chandra et al. [4] studied symmetric duality in mathematical programming under *F*-convexity/*F*-pseudoconvexity for Wolfe and Mond–Weir type models. Kim et al. [5] constructed a pair of multiobjective symmetric dual programs for pseudo-invex functions over arbitrary cones and obtained various duality results. Multiobjective symmetric dual programs over cones in which the objective function is optimized with respect to a cone have been discussed in [6–9]. Recently, Kim and Lee [10] studied nondifferentiable higher-order multiobjective dual programs involving cone constraints and established duality results under higher-order generalized convexity assumptions.

Mangasarian [11] introduced the concept of second-order duality in nonlinear programming. He indicated that it provides tighter bounds for the value of objective functions. This motivated several researchers in this field. Second-order symmetric duality involving nondifferentiable functions has been discussed by Hou and Yang [12] for Mond–Weir type duals, and by Ahmad and Husain [13] and Yang et al. [14] for Wolfe type duals. Yang et al. [15], and Gupta and Kailey [16] studied multiobjective second-order symmetric duality under *F*-convexity.

In this paper, we have formulated Wolfe type nondifferentiable second-order multiobjective symmetric dual programs over arbitrary cones. Using the concept of weak efficiency with respect to a convex cone, weak, strong and converse duality theorems have been established under second-order K-F-convexity assumptions. Some of the known results are obtained as special cases. Self-duality for our programs has also been discussed.

* Corresponding author. Tel.: +91 9037467984. E-mail addresses: himanisaini.iitr@gmail.com (H. Saini), trgmaiitr@rediffmail.com (T.R. Gulati).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.028