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a b s t r a c t

In this paper, we consider the regularity criterion of axisymmetric weak solutions to the
Navier–Stokes equations in R3. Let u be an axisymmetric weak solution in R3

× (0, T ),
w = curl u, and wθ be the azimuthal component of w in the cylindrical coordinates. It
is proved that u becomes a regular solution if wθ

∈ L
2

2−s (0, T ;
.

M2, 3s
), where

.

M2, 3s
is the

critical Morrey–Campanato space.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following Cauchy problem for the incompressible Navier–Stokes equations in R3
× (0, T ):

∂tu + u · ∇u − 1u = −∇p, (x, t) ∈ R3
× (0, T ),

div u = 0, (x, t) ∈ R3
× (0, T ),

u(x, 0) = u0(x), x ∈ R3,

(1.1)

whereu = (u1(x, t), u2(x, t), u3(x, t)) is the velocity field andp = p(x, t) is the scalar pressure,while= (u1
0(x), u

2
0(x), u

3
0(x))

is a given initial velocity vector satisfying ∇ · u0 = 0. Here we use the notation:

u · ∇v =

3−
i=1

ui ∂v

∂xi
, ∇ · u =

3−
i=1

∂ui

∂xi
,

for vector functions u, v.
Although a global weak solution of (1.1) was first constructed by Leray [1] in 1934, the fundamental problem on

uniqueness and regularity of weak solutions still remains open, although great contributions have beenmade in an effort to
understand the regularities of the weak solution. It is well known that regularity can be persistent under certain conditions,
which was introduced in the celebrated work of Serrin [2], and can be described as follows (see also [3]).

A weak solution u is regular if the growth condition

u ∈ Lq(0, T ; Lr) with
2
q

+
3
r

≤ 1, 3 < r ≤ ∞, (1.2)
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