Homotopy method for solving ball-constrained variational inequalities

Xiaona Fan *, Qinglun Yan
College of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210046, PR China

ARTICLE INFO

Article history:
Received 28 July 2009
Accepted 21 September 2010

MSC:

90C33
90C30
65 C 20
65L05

Keywords:

Variational inequality
Nonsmooth equation
Smoothing method
Homotopy method
Global convergence

Abstract

In this paper, we present a smoothing homotopy method for solving ball-constrained variational inequalities by utilizing a similar Chen-Harker-Kanzow-Smale function to smooth Robinson's normal equation. Without any monotonicity condition on the defining map F, for the starting point chosen almost everywhere in R^{n}, the existence and convergence of the homotopy pathway are proven. Numerical experiments illustrate that the method is feasible and effective.

Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Consider the variational inequality problem (VIP for abbreviation): find $y^{*} \in X$ such that

$$
\begin{equation*}
\left(y-y^{*}\right)^{T} F\left(y^{*}\right) \geq 0, \quad \text { for all } y \in X \tag{1}
\end{equation*}
$$

where X is a nonempty closed subset of R^{n} and $F: \mathscr{D} \rightarrow R^{n}$ is continuously differentiable on some open set \mathcal{D}. In this paper, unless otherwise stated, we assume that

$$
\begin{equation*}
X:=\left\{y \in R^{n} \mid\|y\| \leq r\right\} \tag{2}
\end{equation*}
$$

where $r>0$ and $\|\cdot\|$ is the Euclidean norm. Then (1) becomes a ball-constrained variational inequality problem (BVIP for abbreviation). It is well known if X is a closed convex subset of R^{n}, then solving (1) is equivalent to solving the following Robinson's normal equation

$$
\begin{equation*}
E(x):=F\left(\Pi_{X}(x)\right)+x-\Pi_{X}(x)=0 \tag{3}
\end{equation*}
$$

where for any $x \in R^{n}, \Pi_{X}(x)$ is the Euclidean projection of x onto X. In this sense if $x^{*} \in R^{n}$ is a solution of (3), then $y^{*}=\Pi_{X}\left(x^{*}\right)$ is a solution of (1), and conversely, if y^{*} is a solution of (1), then $x^{*}=y^{*}-F\left(y^{*}\right)$ is a solution of (3) [1]. (3) is a nonsmooth equation and has led to various generalized Newton methods. For a review of these methods, one can refer to [2-4]. Particularly, if we assume that X is of the form (2), then the Euclidean projection of x onto X becomes

$$
\Pi_{X}(x)= \begin{cases}\frac{r x}{\|x\|} & \text { if }\|x\|>r \\ x & \text { if }\|x\| \leq r\end{cases}
$$

[^0]
[^0]: * Corresponding author.

 E-mail addresses: fanxiaona12@yahoo.com.cn, xiaonafan@126.com (X. Fan).

