Contents lists available at ScienceDirect







journal homepage: www.elsevier.com/locate/na

# Average locally uniform rotundity and a class of nonlinear maps

## Sebastián Lajara\*

Universidad de Castilla-La Mancha, Departamento de Matemáticas, Campus Universitario, Escuela de Ingenieros Industriales, 02071 Albacete, Spain

#### ARTICLE INFO

Article history: Received 22 July 2010 Accepted 1 November 2010

MSC: 46B20 46B03 46T99

Keywords: ALUR norm LUR norm Dual norm  $\sigma$ -slicely continuous map Properties of countable covering

### ABSTRACT

We consider some topological characterizations of dual Banach spaces that admit an equivalent dual average locally uniformly rotund norm and provide a criterion for such renorming which involves the class of  $\sigma$ -slicely continuous maps.

© 2010 Elsevier Ltd. All rights reserved.

#### 1. Introduction and preliminaries

In this note, we present some covering type characterizations of the class of Banach spaces that admit an equivalent renorming with dual average locally uniformly rotund norm, a property closely related with the notion of locally uniform rotundity. Using these results, we establish a criterion for the existence of such renormings in terms of the class of  $\sigma$ -slicely continuous maps, recently introduced in [1], where a nonlinear transfer method for locally uniformly rotund renorming has been developed. As an application of this criterion, we obtain a 3-space like result for dual average locally uniform rotundity.

Let us recall some definitions and terminology. All the Banach spaces considered in this note are real. The space *X* (or a norm  $\|\cdot\|$  on *X*) is said to be *locally uniformly rotund* (LUR for short) if for every  $x \in X$  and every sequence  $(x_n)_n \subset X$  such that  $\lim_n \|x_n\| = \|x\|$  and  $\lim_n \|(x_n + x)/2\| = \|x\|$  we have  $\lim_n \|x_n - x\| = 0$ .

Obviously, if *X* is a LUR space, then *X* is *strictly convex*, i.e., the unit sphere of *X* does not contain any non-degenerate segment. It is also well-known (see e.g. [2, Chapter II.1] or [3, p. 1782]) that every LUR norm has the *Kadets property*, i.e., the weak and norm topologies agree on its unit sphere.

The space *X* is said to be *average locally uniformly rotund* (ALUR for short) if for every *x* in the unit sphere of *X* and every sequence of Bochner integrable functions  $f_n$ :  $[0, 1] \longrightarrow B_X$  such that  $\lim_n ||x - \int_0^1 f_n(t)dt|| = 0$  we have  $\lim_n \int_0^1 ||x - f_n(t)|| dt = 0$ . ( $B_X$  denotes the closed unit ball of *X*.)

The ALUR property was characterized in [4,5], where it was shown that a Banach space *X* is ALUR if and only if *X* is strictly convex and has the Kadets property, if and only if *X* has the *G* property, i.e., every element of the unit sphere of *X* is an  $\epsilon$ -denting point of  $B_X$  for each  $\epsilon > 0$ . Recall that if *K* is a subset of *X*, then an element  $x \in K$  is said to be an  $\epsilon$ -denting point of *K* if there is a weak open half-space  $H \subset X$  (i.e., a set of the form  $H = f^{-1}(a, \infty)$  for some  $f \in X^* \setminus \{0\}$  and  $a \in \mathbb{R}$ ) such that  $x \in H$  and diam  $(H \cap K) < \epsilon$ .

<sup>\*</sup> Tel.: +34 967 59 92 00; fax: +34 967 59 92 24. *E-mail address:* sebastian.lajara@uclm.es.

 $<sup>0362\</sup>text{-}546X/\$$  – see front matter S 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.11.001