Duffing equation and action functional

Petr Tomiczek*
Department of Mathematics, University of West Bohemia, Univerzitní 22, 30614 Plzeň, Czech Republic

ARTICLE INFO

Article history:

Received 4 February 2010
Accepted 30 November 2010

MSC:

34G20
49J05
34B15

Keywords:

Second order ODE
Periodic problem
Variational method
Critical point

A B S TRACT

In this paper, we investigate the periodic nonlinear second order ordinary differential equation with friction

$$
\begin{aligned}
& x^{\prime \prime}(t)+c x^{\prime}(t)+g(t, x(t))=f(t), \quad t \in[0, T], \\
& x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T),
\end{aligned}
$$

where $c \in \mathbb{R}, g$ is a Caratheodory function, $f \in L^{1}(0, T)$, a quotient $\frac{g(t, s)}{s}$ lies between 0 and $\frac{c^{2}}{4}+\left(\frac{2 \pi}{T}\right)^{2}$ and a nonlinearity g satisfies the potential Landesman-Lazer type condition. We introduce a corresponding energy functional and prove that its critical point is a classical solution to this problem.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we study the nonlinear periodic boundary value problem

$$
\begin{align*}
& x^{\prime \prime}(t)+c x^{\prime}(t)+g(t, x(t))=f(t), \quad t \in[0, T] \\
& x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T), \tag{1.1}
\end{align*}
$$

where $c \in \mathbb{R}$, the nonlinearity $g:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory function and $f \in L^{1}(0, T)$.
In papers [1,2] the authors used topological degree arguments and supposed that $\gamma(t) \leq \lim _{\inf }^{|s| \rightarrow \infty} \frac{g(t, s)}{s} \leq$ $\lim \sup _{|s| \rightarrow \infty} \frac{g(t, s)}{s} \leq \Gamma(t), \Gamma(t) \leq\left(\frac{2 \pi}{T}\right)^{2}$ with the strict inequality on a subset of $[0, T]$ of positive measure (i.e. $\Gamma(t) \ll$ $\left(\frac{2 \pi}{T}\right)^{2}$) and $\gamma(t)$ satisfies $\int_{0}^{T} \gamma(t) \mathrm{d} t \geq 0, \int_{0}^{T} \gamma^{+}(t) \mathrm{d} t>0$ where $\gamma^{+}(t)=\max _{t \in[0, T]}\{\gamma(t), 0\}$. In paper [3] the authors assume that, $\beta(t) \ll \frac{\mathrm{g}(t, s)}{s} \ll \frac{\mathrm{c}^{2}}{4}+\left(\frac{2 \pi}{T}\right)^{2}$ for all $s \in \mathbb{R}$, where $\beta(t) \in C([0, T]), \beta(0)=\beta(T)$ and $\frac{1}{T} \int_{0}^{T} \beta(t) \mathrm{d} t>0$.

In this article, we choose another strategy of proof which relies essentially on a variational method (see also [4,5]). We will investigate the functional

$$
J(x)=\frac{1}{2} \int_{0}^{T}\left[\mathrm{e}^{c t}\left(x^{\prime}+c x\right)^{2}\right] \mathrm{d} t-\int_{0}^{T}\left[\mathrm{e}^{c t} G(t, x)-\mathrm{e}^{c t} f x\right] \mathrm{d} t
$$

where $G(t, s)=\int_{0}^{s} g(t, \xi) \mathrm{d} \xi$, and prove that a critical point x_{0} of the functional J is a solution to problem (1.1). We will assume that the nonlinearity g satisfies, $0 \leq \liminf _{|s| \rightarrow \infty} \frac{g(t, s)}{s} \leq \limsup _{|s| \rightarrow \infty} \frac{g(t, s)}{s} \ll \frac{c^{2}}{4}+\left(\frac{2 \pi}{T}\right)^{2}$ and a potential Landesman-Lazer type condition $\int_{0}^{T} G_{-}(t) \mathrm{d} t<\int_{0}^{T} f(t) \mathrm{d} t<\int_{0}^{T} G_{+}(t) \mathrm{d} t$, where $G_{+}(t)=\liminf _{s \rightarrow+\infty} \frac{G(t, s)}{s}, g_{-}(t)=$ $\limsup { }_{s \rightarrow-\infty} \frac{G(t, s)}{s}$.

[^0]
[^0]: * Tel.: +420 728118048.

 E-mail address: tomiczek@kma.zcu.cz.

