Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Duffing equation and action functional

Petr Tomiczek*

Department of Mathematics, University of West Bohemia, Univerzitní 22, 306 14 Plzeň, Czech Republic

ARTICLE INFO

Article history: Received 4 February 2010 Accepted 30 November 2010

MSC. 34G20 49105 34B15

Keywords: Second order ODE Periodic problem Variational method Critical point

1. Introduction

In this article, we study the nonlinear periodic boundary value problem

$$\begin{aligned} x''(t) + cx'(t) + g(t, x(t)) &= f(t), \quad t \in [0, T], \\ x(0) &= x(T), \qquad x'(0) = x'(T), \end{aligned}$$
(1.1)

where $c \in \mathbb{R}$, the nonlinearity g: $[0, T] \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function and $f \in L^1(0, T)$.

In papers [1,2] the authors used topological degree arguments and supposed that $\gamma(t) \leq \liminf_{|s| \to \infty} \frac{g(t,s)}{s}$ \leq $\limsup_{|s|\to\infty} \frac{g(t,s)}{s} \leq \Gamma(t), \Gamma(t) \leq \left(\frac{2\pi}{T}\right)^2$ with the strict inequality on a subset of [0, *T*] of positive measure (i.e. $\Gamma(t) \ll 1$ $\left(\frac{2\pi}{T}\right)^2$ and $\gamma(t)$ satisfies $\int_0^T \gamma(t) dt \ge 0$, $\int_0^T \gamma^+(t) dt > 0$ where $\gamma^+(t) = \max_{t \in [0,T]} \{\gamma(t), 0\}$. In paper [3] the authors assume that, $\beta(t) \ll \frac{g(t,s)}{s} \ll \frac{c^2}{4} + \left(\frac{2\pi}{T}\right)^2$ for all $s \in \mathbb{R}$, where $\beta(t) \in C([0, T])$, $\beta(0) = \beta(T)$ and $\frac{1}{T} \int_0^T \beta(t) dt > 0$. In this article, we choose another strategy of proof which relies essentially on a variational method (see also [4,5]). We

will investigate the functional

$$J(x) = \frac{1}{2} \int_0^T \left[e^{ct} (x' + cx)^2 \right] dt - \int_0^T \left[e^{ct} G(t, x) - e^{ct} fx \right] dt$$

where $G(t, s) = \int_0^s g(t, \xi) d\xi$, and prove that a critical point x_0 of the functional *J* is a solution to problem (1.1). We will assume that the nonlinearity g satisfies, $0 \leq \liminf_{|s|\to\infty} \frac{g(t,s)}{s} \leq \limsup_{|s|\to\infty} \frac{g(t,s)}{s} \ll \frac{c^2}{4} + \left(\frac{2\pi}{T}\right)^2$ and a potential Landesman–Lazer type condition $\int_0^T G_-(t)dt < \int_0^T f(t)dt < \int_0^T G_+(t)dt$, where $G_+(t) = \liminf_{s\to+\infty} \frac{G(t,s)}{s}, g_-(t) = 1$ $\limsup_{s\to -\infty} \frac{G(t,s)}{s}$.

* Tel.: +420 728118048.

E-mail address: tomiczek@kma.zcu.cz.

ABSTRACT

In this paper, we investigate the periodic nonlinear second order ordinary differential equation with friction

 $x''(t) + cx'(t) + g(t, x(t)) = f(t), \quad t \in [0, T],$ x(0) = x(T). x'(0) = x'(T).

where $c \in \mathbb{R}$, g is a Caratheodory function, $f \in L^1(0, T)$, a quotient $\frac{g(t,s)}{s}$ lies between 0 and $\frac{c^2}{4} + (\frac{2\pi}{r})^2$ and a nonlinearity g satisfies the potential Landesman-Lazer type condition. We introduce a corresponding energy functional and prove that its critical point is a classical solution to this problem.

© 2010 Elsevier Ltd. All rights reserved.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.11.042