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a b s t r a c t

The purpose of this paper is to construct an Ishikawa type of hybrid algorithm for pseudo-
contractive mappings in Hilbert spaces. Our results extend the recent ones announced
by Yao et al. [Y.H. Yao, Y.C. Liou, G. Marino, A hybrid algorithm for pseudo-contractive
mappings, Nonlinear Anal. 71 (2009) 4997–5002] and many others.
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1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Let T be a self-mapping of C . We use F(T )
to denote the set of fixed points of T (i.e., F(T ) = {x ∈ C : Tx = x}).

Definition 1.1 ([1]). A mapping T : C → C is said to be strict pseudo-contraction if there exists a constant 0 ≤ k < 1 such
that

‖Tx − Ty‖2
≤ ‖x − y‖2

+ k‖(I − T )x − (I − T )y‖2, (1.1)

for all x, y ∈ C . If k = 1, then T is said to be a pseudo-contraction, i.e.,

‖Tx − Ty‖2
≤ ‖x − y‖2

+ ‖(I − T )x − (I − T )y‖2, (1.2)

is equivalent to,

⟨(I − T )x − (I − T )y, x − y⟩ ≥ 0, (1.3)

for all x, y ∈ C .

The class of strict pseudo-contractions extend the class of nonexpansive mapping. (A mapping T is said to be
nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C .) That is, T is nonexpansive if and only if T is a 0-strict pseudo-
contraction. The pseudo-contractive mapping includes the strict pseudo-contractive mapping.

Iterativemethods for finding fixed points of nonexpansivemappings are an important topic in the theory of nonexpansive
mappings and have wide applications in a number of applied areas, such as the convex feasibility problem [2–4], the split
feasibility problem [5–7] and image recovery and signal processing [8–10] etc. However, the Picard sequence {T nx}∞n=0 often
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