ELSEVIER

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A triangular map of type 2^∞ with positive topological entropy on a minimal set

F. Balibrea^a, J. Smítal^{b,*}, M. Štefánková^b

^a Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo, 30100 Murcia, Spain ^b Mathematical Institute, Silesian University, 746 01 Opava, Czech Republic

ARTICLE INFO

Article history: Received 11 February 2010 Accepted 18 October 2010

MSC: primary 37B05 37B20 37B40 37B55 54H20

Keywords: Minimal set Skew-product map Topological entropy

1. Introduction

ABSTRACT

We provide a class of triangular maps of the square, $(x, y) \mapsto (f(x), g_x(y))$ of type 2^∞ , i.e., such that the periods of periodic points are the powers of 2, which has a minimal set supporting positive topological entropy. This improves the famous example by S. Kolyada from 1992 and contributes to the solution of an old problem by A.N. Sharkovsky.

© 2010 Elsevier Ltd. All rights reserved.

Let I = [0, 1] be the unit interval, and \mathcal{C} the class of continuous maps $I \rightarrow I$. A *triangular map* is a continuous map $F : I^2 \rightarrow I^2$ of the form $F(x, y) = (f(x), g_x(y))$. We denote the class of triangular maps by \mathcal{T} . It is a special class of twodimensional maps, sharing many properties with \mathcal{C} . For continuous maps of the interval there is a long list of more than 50 mutually equivalent conditions characterizing maps with zero topological entropy [1]. Some of them are not applicable but more than 30 can be considered for maps in \mathcal{T} . It turns out that, e.g., the Sharkovsky's theorem on coexistence of periodic orbits, originally proved for maps in \mathcal{C} , remains valid also for the class \mathcal{T} . On the other hand, there are essential differences between dynamical properties of \mathcal{C} and \mathcal{T} . Many of them can be already illustrated by the maps of *type* 2^{∞} , i.e., maps such that the periods of periodic points are the powers of 2. These maps in \mathcal{C} – but not in \mathcal{T} – always have zero topological entropy. There is a problem formulated in the eighties by Sharkovsky to find all implications between these conditions in the class \mathcal{T} . Partial results can be found, e.g., in [2,3] or [4], or in a survey paper [5]. The following is the famous result by Kolyada from 1992.

Theorem 1 (Cf. [6]). There is a map $F \in \mathcal{T}$ of type 2^{∞} with positive topological entropy.

In 2004, proof of this theorem was simplified [4]. But Kolyada's example can be strengthened. Denote by $h(\varphi)$ the topological entropy of a map φ . Recall that a point *x* is *uniformly recurrent* or, $x \in UR(\varphi)$ if, for any neighborhood *U* of *x*, the set of times *n* such that $\varphi^n(x) \in U$, has bounded gaps. Equivalently, $x \in UR(\varphi)$ if *x* is a *minimal point* of φ , i.e., the

* Corresponding author. Tel.: +420 553684661; fax: +420 553684680.

E-mail addresses: balibrea@um.es (F. Balibrea), jaroslav.smital@math.slu.cz (J. Smital), marta.stefankova@math.slu.cz (M. Štefánková).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.040