Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/na

A best proximity point theorem for weakly contractive non-self-mappings

V. Sankar Raj*

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India

ARTICLE INFO

Article history: Received 1 September 2010 Accepted 22 April 2011 Communicated by Ravi Agarwal

MSC: 41A65 46B20 47H10

Keywords: Fixed points k-contraction Weakly contractive non-self-maps P-property Best proximity points

1. Introduction

Let *A* and *B* be nonempty subsets of a metric space *X*. A map $T : A \rightarrow B$ is said to be a *k*-contraction map if there is a constant $k \in [0, 1)$ such that $d(Tx, Ty) \le kd(x, y)$, for all $x, y \in A$. The well-known Banach contraction principle states that if *A* is a complete subset of *X* and *T* is a contraction map which maps *A* into itself, then *T* has a unique fixed point in *A*. Due to its wide applications in various fields, a huge number of generalizations and extended versions of this principle appear in the literature. For some important and interesting generalizations of Banach's principle, one can refer to [1,2].

The following notion of a weakly contractive self-map was introduced by Alber and Guerre in [3].

Definition 1 ([3]). Let X be a metric space and A be a nonempty subset of X. A map $T : A \rightarrow A$ is said to be a weakly contractive self-map if

 $d(Tx, Ty) \le d(x, y) - \psi(d(x, y)), \text{ for all } x, y \in A,$

where $\psi : [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function such that ψ is positive on $(0, \infty)$, $\psi(0) = 0$ and $\lim_{t\to\infty} \phi(t) = \infty$. If *A* is bounded, then the infinity condition can be omitted.

In [3], Alber and Guerre proved that if $T : \Omega \to \Omega$ is a weakly contractive self-map, where Ω is a closed convex subset of a Hilbert space, then *T* has a unique fixed point in Ω . Later, in [4], Rhoades proved that the existence of a unique fixed

* Tel.: +91 94440 40583. E-mail address: sankarrajv@gmail.com.

ABSTRACT

Let us consider a map $T : A \rightarrow B$, where A and B are two nonempty subsets of a metric space X. The aim of this article is to provide sufficient conditions for the existence of a unique point x^* in A, called the best proximity point, which satisfies $d(x^*, Tx^*) = \text{dist}(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$. Our result generalizes a result due to Rhoades [B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis TMA, 47(2001), 2683–2693] and hence it provides an extension of Banach's contraction principle to the case of non-self-mappings.

© 2011 Elsevier Ltd. All rights reserved.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.052