Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A generalization of Mizoguchi and Takahashi's theorem for single-valued mappings in partially ordered metric spaces

ABSTRACT

problem.

M.E. Gordji*, M. Ramezani

Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Iran

ARTICLE INFO

Article history: Received 3 February 2011 Accepted 5 April 2011 Communicated by S. Ahmad

MSC: 54H25

Keywords: Fixed point theorem Partially ordered metric space

1. Introduction

The fixed point theory for multi-valued mappings developed rapidly after the publication of Nadler's paper [1] in which he established a multi-valued version of Banach's contraction principle.

The existence of fixed points in partially ordered metric spaces was first investigated in 1986 by Turinici [2]. Further results in this direction were proved in, e.g., [3–8].

In this paper, we extend the results of Amini-Harandi and O'Regan [9] to ordered metric spaces for single-valued mappings.

2. Preliminaries

Let (X, d) be a metric space. For $x \in X$ and $A \subseteq X$, $d(x, A) = \inf\{d(x, a); a \in A\}$. We denote by CB(X) the class of nonempty bounded subsets of X, and by K(X) the class of all nonempty compact subsets of X. Let H be the Hausdorff metric on CB(X)generated by metric d, that is,

$$H(A, B) = \max\{\sup_{y \in A} d(x, B), \sup_{y \in B} d(y, A)\}$$

for every A, $B \in CB(X)$. A point $p \in X$ is said to be a fixed point of $T : X \to CB(X)$ if $p \in Tp$. Reich [10] proved that if (X, d) is a complete metric space and $T: X \to CB(X)$ satisfies

 $H(Tx, Ty) \leq \alpha(d(x, y))d(x, y)$

for each x, $y \in X$, where α is a function from $[0, \infty)$ to [0, 1) such that $\limsup_{r \to t^+} \alpha(r) < 1$ for each $t \in (0, \infty)$, then T has a fixed point. Reich raised the question of whether K(X) can be replaced by CB(X) in this result. In [11] Mizoguchi and Takahashi gave a positive answer to the conjecture of Reich; more precisely they proved:

we give an existence and uniqueness theorem for the solution of a periodic boundary value

We present a generalization of Mizoguchi and Takahashi's fixed point theorem for single-

valued mappings in partially ordered metric spaces. As an application of the main result,

© 2011 Elsevier Ltd. All rights reserved.

Corresponding author at: Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran. E-mail addresses: maj_ess@Yahoo.com (M.E. Gordji), ramezanim@ymail.com (M. Ramezani).

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.020