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a b s t r a c t

We present a generalization of Mizoguchi and Takahashi’s fixed point theorem for single-
valued mappings in partially ordered metric spaces. As an application of the main result,
we give an existence and uniqueness theorem for the solution of a periodic boundary value
problem.
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1. Introduction

The fixed point theory for multi-valued mappings developed rapidly after the publication of Nadler’s paper [1] in which
he established a multi-valued version of Banach’s contraction principle.

The existence of fixed points in partially ordered metric spaces was first investigated in 1986 by Turinici [2]. Further
results in this direction were proved in, e.g., [3–8].

In this paper, we extend the results of Amini-Harandi and O’Regan [9] to ordered metric spaces for single-valued
mappings.

2. Preliminaries

Let (X, d) be ametric space. For x ∈ X and A ⊆ X , d(x, A) = inf{d(x, a); a ∈ A}.We denote by CB(X) the class of nonempty
bounded subsets of X , and by K(X) the class of all nonempty compact subsets of X . Let H be the Hausdorff metric on CB(X)
generated by metric d, that is,

H(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}

for every A, B ∈ CB(X). A point p ∈ X is said to be a fixed point of T : X → CB(X) if p ∈ Tp.
Reich [10] proved that if (X, d) is a complete metric space and T : X → CB(X) satisfies

H(Tx, Ty) ≤ α(d(x, y))d(x, y)
for each x, y ∈ X , where α is a function from [0,∞) to [0, 1) such that lim supr→t+ α(r) < 1 for each t ∈ (0,∞), then T
has a fixed point. Reich raised the question of whether K(X) can be replaced by CB(X) in this result. In [11] Mizoguchi and
Takahashi gave a positive answer to the conjecture of Reich; more precisely they proved:
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