

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

The existence of periodic solutions of non-autonomous second-order Hamiltonian systems $^{\scriptscriptstyle \texttt{A}}$

Nurbek Aizmahin, Tianqing An*

Department of Mathematics, Hohai University, Nanjing 210098, China

ARTICLE INFO

Article history: Received 17 May 2010 Accepted 27 April 2011 Communicated by Ravi Agarwal

MSC: 34C25 58F05

Keywords: Critical point Periodic solution The least action principle Saddle point theorem

ABSTRACT

The purpose of this paper is to study the existence of periodic solutions for a class of non-autonomous second-order Hamiltonian systems. Some new existence theorems are obtained by using the least action principle and the saddle point theorem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and the main results

Consider the non-autonomous second-order Hamiltonian system

$$\begin{cases} \ddot{u}(t) = \nabla F(t, u(t)) \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0, \end{cases}$$
(1.1)

where $u(t) \in \mathbb{R}^N$ and $F : [0, T] \times \mathbb{R}^N \to \mathbb{R}^1$ satisfies the following assumption:

(A) F(t, x) is measurable in t for each $x \in \mathbb{R}^N$ and continuously differentiable in x for a.e. $t \in [0, T]$, and there exist $a \in C(\mathbb{R}^+, \mathbb{R}^+)$ and $b \in L^1(0, T; \mathbb{R}^+)$ such that

$$|F(t, x)| + |\nabla F(t, x)| \le a(|x|)b(t)$$

for all $x \in R^N$ and a.e. $t \in [0, T]$.

Here and hereafter, we denote by $\langle \cdot, \cdot \rangle$ and $|\cdot|$ the inner product and norm of \mathbb{R}^n respectively. Let H_T^1 be the usual Sobolev space with the norm

$$||u||_{H^1_T} = \left(\int_0^T |u(t)|^2 \mathrm{d}t + \int_0^T |\dot{u}(t)|^2 \mathrm{d}t\right)^{\frac{1}{2}}.$$

The functional φ on H_T^1 corresponding to (1.1) is given by

$$\varphi(u) = \int_0^T \left(\frac{1}{2}|\dot{u}(t)|^2 + F(t, u(t))\right) \mathrm{d}t$$

* Corresponding author.

E-mail address: antq@hhu.edu.cn (T. An).

[🌣] Supported by the NNSF of China (10871059) and the Fundamental Research Funds for the Central Universities.

 $^{0362\}text{-}546X/\$$ – see front matter S 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.060