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1. Introduction

Let E be a real Banach, E* is the dual space of E, C is a nonempty closed convex subset of E. ] : E — 2E" is the normalized

duality mapping defined by
Jeo =A{f € E* : (x, f) = IxI.IFII, IIxNl = [If[I},  x € E.

Let T : C — C be a nonexpansive mapping (i.e., ||[Tx — Ty|| < ||x —y|| forallx, y € C). We use F(T) to denote the set of fixed
points of T, i.e., F(T) := {x € C : x = Tx}. We know that F(T) is nonempty if E is a reflexive Banach space with the Opial
condition and C is a nonempty closed convex and bounded subset of E. Fix u € C. Then for each o € (0, 1), there exists a
unique point x,, € C satisfying x, = au + (1 — «)Tx, because the mapping x — «ou + (1 — «)Tx is contractive. In 1967,
Browder [1] considered an implicit iteration for approximating fixed points of a nonexpansive mapping in a Hilbert space.

Theorem 1.1 (Browder [1]). Let C be a closed convex subset of a Hilbert space H and let T be a nonexpansive mapping on C with
a fixed point. Let o, be a sequence of (0, 1) converging to 0. Fix u € C and define a sequence x,, by

Xp = oql + (1 —ap)TX,, neN. (1.1)
Then {x,} converges strongly to the element of F(T) nearest to u.

Let {T(t) : t > 0} be a strongly continuous semigroup of nonexpansive mapping on a closed convex subset C of a Banach
spaceE, i.e.,

(1) foreach t > 0, T(t) is a nonexpansive mapping on C;

(2) T(0)x =xforallx € C;

(3) T(s+1t) =T(s) oT(t) foralls,t > 0;

(4) for each x € E, the mapping T(.)x from R into C is continuous.

We put F(T) = ﬂOF(T(t)). We know that F(T) is nonempty if C is a nonempty closed convex and bounded subset in a
t>

uniformly convex Banach space E [2]. In 1998, Shioji and Takahashi [3] proved the following result.

Theorem 1.2 (Shioji and Takahashi [3]). Let C be a closed convex subset of a Hilbert space H. Let {T(t) : t > 0} be a strongly

continuous semigroup of nonexpansive mappings on C such that F(T) # (. Let {«y,} and {t,} be sequences of real numbers
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