Functional equations with exotic addition

Włodzimierz Fechner

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

ARTICLE INFO

Article history:

Received 13 March 2011
Accepted 25 May 2011
Communicated by Ravi Agarwal
MSC:
17D99
26E99
39B12
39B22

Keywords:

Exotic addition
Sine-type addition
Functional equation of Abel
Composite functional equations

A B S T R A C T

We deal with the following "exotic" addition:

$$
x \oplus y:=x f(y)+y f(x)
$$

on an arbitrary interval containing zero and we solve "exotic" versions of the Jensen functional equation and the equation of derivations.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Northshield [1] introduced the term exotic addition for two types of operations he dealt with. One of them was the following "sine-type" addition on the real line:

$$
\begin{equation*}
x \oplus y:=x f(y)+y f(x) \tag{1}
\end{equation*}
$$

with $f: \mathbb{R} \rightarrow \mathbb{R}$, enjoying some regularity properties. The name "sine-type" addition, which appears in [1], is justified by the fact that if one takes mapping $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{1-x^{2}}$ for $x \in[-1,1]$, then in this particular case the sine function acts as a homomorphism between the real line with ordinary addition and the interval $[-1,1]$ with "exotic" addition \oplus. In other words, we have

$$
\sin (x+y)=\sin (x) \oplus \sin (y)
$$

for all $x, y \in \mathbb{R}$.
Northshield [1] provided several conditions equivalent to the associativity of \oplus [1, Theorem 4 and Corollary 1]. From these results, it follows that the associativity seems to be a fairly restrictive assumption since it implies a particular form of mapping f (given in an implicit form involving solutions of some ODEs).

It is easy to check that the associativity of a similar operation \odot defined as $x \odot y=x+f(x) y$ for all x, y belonging to some nonvoid interval is equivalent to the fact that function f solves the Gołąb-Schinzel functional equation:

$$
\begin{equation*}
f(x+y f(x))=f(x) f(y) \tag{2}
\end{equation*}
$$

[^0]
[^0]: E-mail addresses: fechner@math.us.edu.pl, wlodzimierz.fechner@us.edu.pl.
 0362-546X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.na.2011.05.076

