Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

The unit sphere in an infinite dimensional Banach space is a lipschitzian retract of the unit

ball. The aim of this paper is to present a new upper bound for the optimal retraction

constant in some classical Banach spaces. In particular, an improved estimate from above

Retracting a ball onto a sphere in some Banach spaces

ABSTRACT

is obtained for the space C[0, 1].

Łukasz Piasecki

Institute of Mathematics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland

ARTICLE INFO

Article history: Received 12 November 2009 Accepted 29 August 2010

MSC: primary 47H10

Keywords: Minimal displacement Optimal retractions Lipschitzian mappings

1. Introduction

Let (X, || ||) be an infinite dimensional real Banach space with the closed unit ball B_X and the unit sphere S_X . Since the works of Nowak [1] and Benyamini and Sternfeld [2] it has been known that S_X is a lipschitzian retract of B_X . This means that there exists a retraction $R : B_X \to S_X$ ($R|_{S_X} = I$ where I denotes identity) satisfying, with a certain constant k > 0, the Lipschitz condition

$$\|Rx - Ry\| \le k \|x - y\|$$

for all $x, y \in B_X$. For any space X we define the optimal retraction constant

 $k_0(X) = \inf \{k : \text{ there exists a retraction } R : B_X \to S_X \text{ satisfying } (1.1) \}.$

At present the exact value of $k_0(X)$ is not known for any single Banach space. Let us recall some up to date bounds. The universal known bound from below is $k_0(X) \ge 3$ but for some spaces there are better estimates, for example, $k_0(X) > 3$ for uniformly convex spaces, $k_0(l_1) \ge 4$ and $k_0(H) > 4.5$ for Hilbert space. There have been several approaches to giving a reasonable universal estimate from above. All of them ended at the level of the high thousands (see for example [3]). Much better estimates exist for many classical Banach spaces; for example $k_0(H) \le 28.99$ for every Hilbert space (see [4]). A construction presented in [5] shows that $k_0(l_1) \le 8$. The same estimate holds for $L_1(0, 1)$ and a few other spaces (see [6]). In paper [7] the authors present an example of 7-lipschitzian retraction in the space $BC_z(M)$, where M is an arbitrary connected metric space consisting of more than one point, $z \in M$ and $BC_z(M)$ is the space of bounded continuous functions vanishing at z and furnished with a standard sup norm. A more technical approach is presented in [8] with the conclusion $k_0 (BC_z(M)) \le 2(2 + \sqrt{2}) = 6.82 \cdots$. At present the last result is the minimum of upper bounds over the Banach spaces for which the upper bound is known.

An interesting situation is observed for the space C[0, 1]. The best known estimate for this space is k_0 (C[0, 1]) $\leq 4(1 + \sqrt{2})^2 = 23.31 \cdots$ (see [9]). Here we describe a new general construction improving, in particular, the upper bound of k_0 (C[0, 1]).

(1.1)

© 2010 Elsevier Ltd. All rights reserved.

E-mail address: piasecki@hektor.umcs.lublin.pl.

 $^{0362\}text{-}546X/\$$ – see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.08.050