Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Effect of varying reflux durations on the physico-chemical and catalytic performance of vanadium phosphate catalysts synthesized via vanadyl hydrogen phosphate sesquihydrate

L.K. Leong^{a,*}, K.S. Chin^a, Y.H. Taufiq-Yap^b

^a Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia ^b Centre of Excellence for Catalysis Science and Technology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

ARTICLE INFO

Article history: Received 11 March 2011 Received in revised form 30 November 2011 Accepted 2 December 2011 Available online 9 December 2011

Keywords: Vanadyl hydrogen phosphate sesquihydrate precursor Vanadyl pyrophosphate Selective oxidation Maleic anhydride

ABSTRACT

A series of vanadyl pyrophosphate, (VO)₂P₂O₇, catalysts prepared via vanadyl hydrogen phosphate sesquihvdrate precursors (VOHPO₄·1.5H₂O) was calcined in a reaction flow of 0.75% *n*-butane in air mixture at 733 K for 18 h. The precursors have been synthesized by refluxing vanadyl phosphate dihydrate (VOPO₄·2H₂O) with 1-butanol for different lengths of time, i.e. 8, 15 and 24 h, and the produced catalysts were denoted as VPOs-R8, VPOs-R15 and VPOs-R24, respectively. X-ray diffraction (XRD) patterns of the three catalysts showed similar diffraction pattern, comprised of a well-crystallized (VO)₂P₂O₇ phase. Brunauer-Emmett-Teller (BET) surface area measurements showed that VPOs-R24 has the highest specific surface area, i.e. $31 \text{ m}^2 \text{ g}^{-1}$ followed by $27 \text{ m}^2 \text{ g}^{-1}$ and $19 \text{ m}^2 \text{ g}^{-1}$ for VPOs-R15 and VPOs-R8, respectively. Inductively coupled plasma (ICP) analyses indicated that the P/V atomic ratios of these catalysts were in the optimum range in producing (VO)₂P₂O₇ phase. A small increment in the average oxidation number of the vanadium was observed as the precursor reflux duration increased. Scanning electron microscope showed the secondary structures of the catalysts with plate-like crystals in different sizes, which were agglomerated into rosette-shape clusters. The total amount of oxygen desorbed from the catalysts increased as the precursor reflux duration increased. Temperature-programmed reduction (TPR) in H₂ profiles of all the catalysts gave three reduction peaks. VPO_s-R8 gave the highest total amount of oxygen removed from V⁵⁺/V⁴⁺ phase followed by VPOs-R15 and VPOs-R24. Catalytic tests revealed that the catalyst with lower precursor reflux duration exhibited higher selectivity but lower activity and vice versa

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The high environmental impact and mounting prices of benzene in the early 1970s have resulted in the finding of other feedstocks for maleic anhydride [1]. Consistent researches in both academic and industrial sectors have shed considerable light on the nature of a catalyst performing an extremely selective, 14-electron oxidative conversion of *n*-butane to maleic anhydride [2]. This industrial process is still the only commercialized alkane selective oxidation by heterogeneous gas-solid catalytic process, which is specifically based on the presence of vanadyl pyrophosphate, $(VO)_2P_2O_7$ [3,4]. $(VO)_2P_2O_7$ has been identified as the critical active phase for the selective oxidation of *n*-butane [5].

Recently, different researchers have extensively studied a variety of modifications for the preparation pathway of vanadium phosphorus oxide (VPO) catalyst such as calcination conditions [6], incorporating promoters [7] and P/V atomic ratios [8,9]. The surface chemistry and bulk properties of the active VPO catalysts change with the time and condition of calcination were reported [10]. Also, the catalytic properties of this catalyst could be improved by the incorporation of specific promoters, which encourage higher selectivity towards maleic anhydride [11,12].

In the present study, the latest alternative route in producing $(VO)_2P_2O_7$ catalyst, which is via vanadyl hydrogen phosphate sesquihydrate precursor $(VOHPO_4 \cdot 1.5H_2O)$ [13–15] has been employed. The effect of varying reflux durations in the preparation of the sesquihydrate precursors towards the physicochemical properties and catalytic performances of the catalysts was examined.

2. Experimental

2.1. Preparation of vanadyl pyrophosphate catalysts via sesquihydrate precursors

The synthesis of VOHPO₄ \cdot 1.5H₂O precursor involving vanadyl phosphate dihydrate, VOPO₄ \cdot 2H₂O as an intermediate product,

^{*} Corresponding author. Tel.: +60 341079802; fax: +60 341079803. *E-mail addresses*: leonglk@utar.edu.my, lloongkong@yahoo.com (LK. Leong).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2011.12.007