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a b s t r a c t

The parametric equations of the plane curves determining the equilibrium shapes that a uniform

inextensible elastic ring or tube could take subject to a uniform hydrostatic pressure are presented in

an explicit analytic form. The determination of the equilibrium shape of such a structure corresponding

to a given pressure is reduced to the solution of two transcendental equations. The shapes with points

of contact and the corresponding (contact) pressures are determined by the solutions of three

transcendental equations. The analytic results presented here confirm many of the previous numerical

results on this subject but the results concerning the shapes with lines of contact reported up to now

are revised.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper, the problem for determination of the
equilibrium shapes of a circular inextensible elastic ring subject
to a uniformly distributed external force that acts normally to the
ring in the ring plane is addressed. This problem is also referred to
as the stability problem or buckling of the circular shape of the
ring and the other equilibrium shapes are called buckled [1–3].
It is also known (see, e.g., [4–6]) that if a cylindrical elastic shell of
circular cross section (i.e., a tube) is subject to a uniform external
pressure, which is normal to its middle surface, then the typical
cross section of the deformed tube takes the same shapes as the
axis of a deformed elastic ring does provided that the latter is a
simple curve (i.e., a curve without intersections). Therefore, here
the term ‘‘ring’’ will be used to indicate both a proper ring and a
tube. It should be noted also that in the majority of the works in
this field, the distributed force acting on a ring is called pressure
as in the case of a shell. Following this tradition, we will use the
same term in the present study remembering that pressure
means force per unit length in the case of a ring and force per
unit area in the case of a shell.

Maurice Lévy [7] was the first who stated and studied the
problem under consideration and reduced the determination of the
foregoing equilibrium shapes in polar coordinates to two elliptic

integrals for the arclength and polar angle regarded as functions of
the squared radial coordinate. He found also several remarkable
properties of the equilibrium ring shapes and obtained that if the
pressure p is such that poð9=4ÞðD=r3Þ, where D and r are the ring
bending rigidity and radius of the undeformed shape, respectively,
then the ring possesses only the circular equilibrium shape.

Later on, Halphen [8] and Greenhill [9] derived exact solutions
to this problem in terms of Weierstrass elliptic functions on the
ground of complicated analyses of the properties of the afore-
mentioned elliptic integrals. Halphen (see [8, p. 235]) found out
that non-circular shapes with nZ2 axes of symmetry are possible
only for pressures greater than pn ¼ ðn2�1ÞðD=r3Þ. Halphen [8]
and Greenhill [9] presented also several examples of non-circular
equilibrium ring shapes. It should be noted, however, that the
exact solutions reported in [8,9], representing the polar angle as a
function of the radius, appeared to be intractable and many
researchers continued searching exact solutions [1,10–15], while
others used various approximations [2,4,6,16] on the way to
determine the equilibrium shapes of the ring.

Carrier [1] was the first who reconsidered the foregoing
problem for the buckling of an elastic ring about half a century
after the works by Lévy, Halphen and Greenhill. He expressed the
curvature of the deformed ring in terms of Jacobi cosine func-
tion [17] involving several unknown parameters to be determined
by a system of algebraic equations. However, he succeeded to find
approximate solutions to this system only for small deflections
from the undeformed circular ring shape (see the exhaustive
analysis provided recently by Adams [11] who has criticised and
developed Carrier’s work [1]).
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